This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promi...This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.展开更多
文摘This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.