A narrow linewidth stable high-power continuous-wave 3.5% Tin3+ doped LiYF4 (Tm:YLF) laser is reported. By using dual F P etalons and three Tm:YLF rods in a cavity, laser output of ~60 W at 1907.7nm is obtained w...A narrow linewidth stable high-power continuous-wave 3.5% Tin3+ doped LiYF4 (Tm:YLF) laser is reported. By using dual F P etalons and three Tm:YLF rods in a cavity, laser output of ~60 W at 1907.7nm is obtained with a slope efficiency of 34.8%. The M2 factor is found to be ~2.0 under an output power of 30 W. In addition, the relaxation oscillation and efficiency of the Tm:YLF laser are also studied. The relaxation oscillation of the Tm:YLF laser is improved obviously by setting the ratio of pump beam to oscillating laser beam as ~1.5:1 and the efficiency is increased in comparison with the ratio of ~1.3:1.展开更多
To improve the formability of W-rare earth electrode, the influence of high-energy pulse on the plasticity property of W-CeOrods was investigated. The effects of current density(J), pulse width(tw), frequency(f), and ...To improve the formability of W-rare earth electrode, the influence of high-energy pulse on the plasticity property of W-CeOrods was investigated. The effects of current density(J), pulse width(tw), frequency(f), and strain rate on the plasticity of W-CeOrods were discussed in detail. Results of tensile tests show that the W-CeOrods applied with the electrical pulses obtain a maximum percentage total elongation at fracture(9.65 %), increased by118.7 % compared to that without pulses. This is owing to both the heat effect and the interaction of current between dislocations and rare earth additions. Electron back scattered diffraction(EBSD)-generated grain boundary(GB) maps suggest that the length of low-angle grain boundaries composed of high-density dislocations decreases after deformation while applying the pulse current. This demonstrates that the short-duration pulsed current enhances the mobility of dislocations. Scanning electron microscopy(SEM) images of the rods after deformation with the pulse current show that the long fiber-shaped additions become discontinuous,which could reduce the stress concentration and hinder the crack propagation.展开更多
文摘A narrow linewidth stable high-power continuous-wave 3.5% Tin3+ doped LiYF4 (Tm:YLF) laser is reported. By using dual F P etalons and three Tm:YLF rods in a cavity, laser output of ~60 W at 1907.7nm is obtained with a slope efficiency of 34.8%. The M2 factor is found to be ~2.0 under an output power of 30 W. In addition, the relaxation oscillation and efficiency of the Tm:YLF laser are also studied. The relaxation oscillation of the Tm:YLF laser is improved obviously by setting the ratio of pump beam to oscillating laser beam as ~1.5:1 and the efficiency is increased in comparison with the ratio of ~1.3:1.
基金financially supported by the National Key Technology R&D Program of China (No. 2012BAE06 B02)the Beijing Municipal Science and Technology Project (No. Z141100003814008)
文摘To improve the formability of W-rare earth electrode, the influence of high-energy pulse on the plasticity property of W-CeOrods was investigated. The effects of current density(J), pulse width(tw), frequency(f), and strain rate on the plasticity of W-CeOrods were discussed in detail. Results of tensile tests show that the W-CeOrods applied with the electrical pulses obtain a maximum percentage total elongation at fracture(9.65 %), increased by118.7 % compared to that without pulses. This is owing to both the heat effect and the interaction of current between dislocations and rare earth additions. Electron back scattered diffraction(EBSD)-generated grain boundary(GB) maps suggest that the length of low-angle grain boundaries composed of high-density dislocations decreases after deformation while applying the pulse current. This demonstrates that the short-duration pulsed current enhances the mobility of dislocations. Scanning electron microscopy(SEM) images of the rods after deformation with the pulse current show that the long fiber-shaped additions become discontinuous,which could reduce the stress concentration and hinder the crack propagation.