We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ...We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.展开更多
The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three de...The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three degenerated twonode W states, then we find the nonzero submatrix of the corresponding covariance correlation tensor in quantum network theory. On the other side, excepting the linkage 41 corresponding to Bell bases, we conjecture that the another one possible oriented link (which is composed of two-component knots entangled with each other and has four crossings) would be the required knotted pictures of the two nodes W states, thence obtain the nonzero submatrix of the Alexander relation matrix in the theory of knot crystals for these knotted pictures. The equality of the two nonzero submatfices of different kinds thus verify the exactness of our conjecture. The superposition of three knotted pictures of two-node W states from different choices of the emptied node gives the knotted pictures of three-node W states, thus shows the correspondence between three-node W states in quantum network theory and the oriented links in knot theory. Finally we point out that there is an intimate and simple relationship between the knotted pictures of GHZ states and W states.展开更多
We propose a scheme to generate the W states with many SQUIDs (superconducting-quantum-interferencedevices)in cavity QED via Raman transition.In this scheme,the transfer of quantum information between the SQUIDsand ca...We propose a scheme to generate the W states with many SQUIDs (superconducting-quantum-interferencedevices)in cavity QED via Raman transition.In this scheme,the transfer of quantum information between the SQUIDsand cavity is not required.And the cavity field is only virtually excited,thus the cavity decay is suppressed during theW states generation.The SQUIDs are always populated in the two ground states.Therefore,the scheme is insensitiveto the spontaneous emission of the excited level of the SQUID and cavity decay.展开更多
A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared pe...A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.展开更多
The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into...The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into two pairs and trapped in two separate optical cavities. Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity, which is a stable state. After driving the system out of DFS, the atoms will interact resonantly with the cavity field. The photons leaking from the cavities interfere at the beamsplitter, which destroys which-path information, and are finally detected by one of the detectors, leading to the generation of a W state. In addition, the numerical simulation indicates that the fidelity of the prepared state can, for a very wide parameter regime, be very close to unity.展开更多
A theoretical protocol of quantum dialogue is proposed,which uses a class of three-photon W states asquantum channel.After two-step security check,four-bit secret message can be transmitted to each other by transmitti...A theoretical protocol of quantum dialogue is proposed,which uses a class of three-photon W states asquantum channel.After two-step security check,four-bit secret message can be transmitted to each other by transmittingof single photon with the aid of two-bit classical information.展开更多
Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are share...Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.展开更多
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, t...In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.展开更多
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W st...A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.展开更多
We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled b...We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.展开更多
We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum ...We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.展开更多
Quantum discord is the most prominent of quantum correlations, but it does not have unique generalizations to the multipartite case. W states are especially useful for secure communication. In this paper, we propose t...Quantum discord is the most prominent of quantum correlations, but it does not have unique generalizations to the multipartite case. W states are especially useful for secure communication. In this paper, we propose that the quantum correlation in generic three-qubit pure W states can be given by the two-qubit discords of these states.展开更多
We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the tel...We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.展开更多
This paper proposes a scheme for entanglement concentration of unknown triparticle W class states with a certain probability. This protocol is mainly based on the coincidences of single-photon detectors and requires s...This paper proposes a scheme for entanglement concentration of unknown triparticle W class states with a certain probability. This protocol is mainly based on the coincidences of single-photon detectors and requires single-photon detectors and linear optical elements. The scheme is feasible within current technology.展开更多
Measurement-induced nonlocality(MIN) is a newly defined quantity to measure correlations in bipartite quantum states [Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401]. MIN in the n-qubit W and Greenberger–Horne–Ze...Measurement-induced nonlocality(MIN) is a newly defined quantity to measure correlations in bipartite quantum states [Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401]. MIN in the n-qubit W and Greenberger–Horne–Zeilinger(GHZ) superposition states is considered. It is revealed that n = 3 and n ≥ 4 states have very different characteristics,especially the monogamy relation about MIN, and the monogamy equality of MIN is held in all n-qubit W states(n ≥ 3).展开更多
A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We ...A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We show that the quantum information is split into two parts~ thus the original atomic state cannot be perfectly restored by the receiver without the other agent's collaboration and classical communication. In addition, the physical realization of this scheme is not difficult.展开更多
In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unkn...In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unknown state is transmitted from the sender to the recipient under the control of all supervisors. It can be realized with a certain probability. After the sender makes Bell-state measurements and the supervisors perform the computational basis measurements, the recipient will introduce auxiliary particles and carry out unitary transformations depending on classical information from the sender and the supervisors. Finally, the computational basis measurement will be performed by the recipient to confirm whether the teleportation succeeds or not. The successful completion of the scheme relies on all supervisors' cooperation. In addition, the fidelity and security of the scheme are discussed.展开更多
We put forward an experimentally feasible protocol for realizing a perfect teleportation by using a class of W-state in QED. The simple way of generating the entangled channel and distinguishing the measurement bases ...We put forward an experimentally feasible protocol for realizing a perfect teleportation by using a class of W-state in QED. The simple way of generating the entangled channel and distinguishing the measurement bases is the distinct feature of our scheme. In addition, the probability of teleportation is up to 100%. The scheme can be implemented by the present cavity QED techniques.展开更多
We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang ...We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang et al.[Phys.Rev.B 81(2010) 104524],our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations,but also have much stronger coupling constant with TLR.Based on the favourable properties of transmons and TLR,our method is more feasible in experiment.展开更多
We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorize...We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorized two users can exchange their secret messages with the help of the controller after purifying the non-maximally entangled states quantum channel unconditionally securely and simultaneously. Our quantum communication protocol seems even more feasible within present technologies.展开更多
基金the National Natural Science Foun-dation of China(Grant No.12204311)the Jiangxi Natural Science Foundation(Grant No.20224BAB211025).
文摘We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
文摘The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three degenerated twonode W states, then we find the nonzero submatrix of the corresponding covariance correlation tensor in quantum network theory. On the other side, excepting the linkage 41 corresponding to Bell bases, we conjecture that the another one possible oriented link (which is composed of two-component knots entangled with each other and has four crossings) would be the required knotted pictures of the two nodes W states, thence obtain the nonzero submatrix of the Alexander relation matrix in the theory of knot crystals for these knotted pictures. The equality of the two nonzero submatfices of different kinds thus verify the exactness of our conjecture. The superposition of three knotted pictures of two-node W states from different choices of the emptied node gives the knotted pictures of three-node W states, thus shows the correspondence between three-node W states in quantum network theory and the oriented links in knot theory. Finally we point out that there is an intimate and simple relationship between the knotted pictures of GHZ states and W states.
基金Supported by National Natural Science Foundation of China under Grant No.10704017
文摘We propose a scheme to generate the W states with many SQUIDs (superconducting-quantum-interferencedevices)in cavity QED via Raman transition.In this scheme,the transfer of quantum information between the SQUIDsand cavity is not required.And the cavity field is only virtually excited,thus the cavity decay is suppressed during theW states generation.The SQUIDs are always populated in the two ground states.Therefore,the scheme is insensitiveto the spontaneous emission of the excited level of the SQUID and cavity decay.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10504042)the Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University)Ministry of Education of China (Grant No.QSQC0902)
文摘A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.
文摘The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into two pairs and trapped in two separate optical cavities. Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity, which is a stable state. After driving the system out of DFS, the atoms will interact resonantly with the cavity field. The photons leaking from the cavities interfere at the beamsplitter, which destroys which-path information, and are finally detected by one of the detectors, leading to the generation of a W state. In addition, the numerical simulation indicates that the fidelity of the prepared state can, for a very wide parameter regime, be very close to unity.
基金Supported by the National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province under Grant No.2008006
文摘A theoretical protocol of quantum dialogue is proposed,which uses a class of three-photon W states asquantum channel.After two-step security check,four-bit secret message can be transmitted to each other by transmittingof single photon with the aid of two-bit classical information.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10647101 and 10704011
文摘Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.
基金supported by Program for New Century Excellent Talents in Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ056
文摘In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.
基金The project supported by National Natural Science Foundation of Chins under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 90503010,10874050,10975054,91021011 and 11005057)National Basic Research Program of China (Grant No. 2005CB724508)the Foundation from the Ministry of Education of China (Grant No. 200804870051)
文摘We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174300)the Natural Science Foundation of Hubei Province of China(Grant No.2020CFB748)+2 种基金the Natural Science Foundation of Shandong Province of China(Grant Nos.ZR2021MA042 and ZR2021MA078)the Program for Science and Technology Innovation Team in Colleges of Hubei Province of China(Grant No.T2021012)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(Grant Nos.BK202113,BK201906,and BK202008)。
文摘We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.
基金supported by National Natural Science Foundation of China (NSFC) under Grant No.11271237 and No.61228305
文摘Quantum discord is the most prominent of quantum correlations, but it does not have unique generalizations to the multipartite case. W states are especially useful for secure communication. In this paper, we propose that the quantum correlation in generic three-qubit pure W states can be given by the two-qubit discords of these states.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574022 and Natural Science Foundation of Fujian Province under Grant No. Z0512006
文摘We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.
基金Project supported by the Natural Science Foundation of the Education Department of Anhui Province, China (Grant No 2006kj070A) and Anhui Provincial Natural Science Foundation, China (Grant No 03042401) and the Talent Foundation of Anhui University, China.
文摘This paper proposes a scheme for entanglement concentration of unknown triparticle W class states with a certain probability. This protocol is mainly based on the coincidences of single-photon detectors and requires single-photon detectors and linear optical elements. The scheme is feasible within current technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.61275215 and 10905016)the National Fundamental Research Program of China(Grant No.2011CBA00203)+1 种基金the Fujian Provincial College Funds for Distinguished Young Scientists,China(Grant No.JA14070)the Natural Science Foundation of Hebei Province,China(Grant No.A2012205062)
文摘Measurement-induced nonlocality(MIN) is a newly defined quantity to measure correlations in bipartite quantum states [Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401]. MIN in the n-qubit W and Greenberger–Horne–Zeilinger(GHZ) superposition states is considered. It is revealed that n = 3 and n ≥ 4 states have very different characteristics,especially the monogamy relation about MIN, and the monogamy equality of MIN is held in all n-qubit W states(n ≥ 3).
基金The project supported by National Natural Science Foundation of China under Grant Nos.60472017,10575017,and 10704011Science Foundation of the Educational Department of Laioning Province under Grant No.2006B014
文摘A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We show that the quantum information is split into two parts~ thus the original atomic state cannot be perfectly restored by the receiver without the other agent's collaboration and classical communication. In addition, the physical realization of this scheme is not difficult.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647101).
文摘In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unknown state is transmitted from the sender to the recipient under the control of all supervisors. It can be realized with a certain probability. After the sender makes Bell-state measurements and the supervisors perform the computational basis measurements, the recipient will introduce auxiliary particles and carry out unitary transformations depending on classical information from the sender and the supervisors. Finally, the computational basis measurement will be performed by the recipient to confirm whether the teleportation succeeds or not. The successful completion of the scheme relies on all supervisors' cooperation. In addition, the fidelity and security of the scheme are discussed.
基金supported by National Natural Science Foundation of China under Grant No.10674001the Program of the Education Department of Anhui Province under Grant No.KJ2007A002the Youth Program of Fu Yang Normal College under Grant No.2005LQ04
文摘We put forward an experimentally feasible protocol for realizing a perfect teleportation by using a class of W-state in QED. The simple way of generating the entangled channel and distinguishing the measurement bases is the distinct feature of our scheme. In addition, the probability of teleportation is up to 100%. The scheme can be implemented by the present cavity QED techniques.
基金Supported by the National Natural Science Foundation of China under Grant No. 10947017/A05Key Lab of Novel Thin Film Solar Cells (KF200912)Graduates’ Innovative Scientific Research Project of Zhejiang Province under Grant No. 2011831
文摘We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang et al.[Phys.Rev.B 81(2010) 104524],our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations,but also have much stronger coupling constant with TLR.Based on the favourable properties of transmons and TLR,our method is more feasible in experiment.
基金The project supported by National Natural Science Foundation of China under Grant No.10575017
文摘We present a controlled secure quantum communication protocol using non-maximally (pure) entangled W states first, and then discuss the basic requirements for a real quantum communication. We show that the authorized two users can exchange their secret messages with the help of the controller after purifying the non-maximally entangled states quantum channel unconditionally securely and simultaneously. Our quantum communication protocol seems even more feasible within present technologies.