Nanostructured (NS) W-Cu composite powder was prepared by mechanical alloying (MA), and nanostructured bulk of W-Cu contact material was fabricated by hot pressed sintering in an electrical vacuum furnace. The mic...Nanostructured (NS) W-Cu composite powder was prepared by mechanical alloying (MA), and nanostructured bulk of W-Cu contact material was fabricated by hot pressed sintering in an electrical vacuum furnace. The microstructure, electric conductivity, hardness, breakdown voltage and arcing time of NS W-Cu alloys were measured and compared to conventional W-Cu alloys prepared by powder metallurgy. The results show that microstructural refinement and uniformity can improve the breakdown behavior, the electric arc stability and the arc extinction ability of nanostructured W-Cu contacts materials. Also, the nanostructured W-Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.展开更多
Nanostructured ( NS )W-Cu composite powder was prepared by mechanical alloying ( MA ), and nanostructared bulk of W-Cu contact material was fabricated by hot press sintering in an electrical vacuum furnace. The rn...Nanostructured ( NS )W-Cu composite powder was prepared by mechanical alloying ( MA ), and nanostructared bulk of W-Cu contact material was fabricated by hot press sintering in an electrical vacuum furnace. The rnicrostructure, electric conductivity, hardness and break down voltage of NS W- Cu alloys were measured and compared to those of conventional W-Cu alloys prepared by powder metallurg'y. The experimental results show that microstructural refinement and uniformity can improve the breakdown behavior and the electric arc stability of nanostructared W- Cu contacts materials. Also, the wanostructured W- Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.展开更多
The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by sca...The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by scanning eleclion microscopy. It is concluded that the nanocomposite W-Cu electrical contact material shows a characteristic of spreading arcs. The arc breakdown of a commercially used W-Cu alloy was limited in a few areas, and its average arc erosion rate is twice as large as that of the former. Furthermore, it is also proved that the arc extinction ability and arc stability of the nanocomposite W-Cu material are excellent, and melting is the major failure modality in the make-and-break operation of arcs.展开更多
W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosi...W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosion resistance and the advantages of Cu - high heat conductivity and ductility. Four different fabrication processes for W/Cu or Mo/Cu, including hot-pressing, Cu infiltration of sintered porosity-graded W skeleton, spark plasma sintering and plasma spraying, were investigated and compared. It was foundthat the hot-pressing process is difficult to keep the designed composition gradient, while the other three processes are successful in making W/Cu or Mo/Cu FGM. Meanwhile, microstructures and composition gradients are analyzed with SEM and EDAX.展开更多
Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film i...Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.展开更多
The infiltration mechanism, which has great significance for the quality control of electrieal contact material made from W-Cu, W-Ag alloys with high content of tungsten, has been studied. And a directive infiltration...The infiltration mechanism, which has great significance for the quality control of electrieal contact material made from W-Cu, W-Ag alloys with high content of tungsten, has been studied. And a directive infiltration technology for improving the product quality and gaining a better economic benefit has been developed.展开更多
基金supported by the National Natural Science Fundation of China under grant No.50071043the Natural Science Fundation of Shaanxi province under grant No.2004E105.
文摘Nanostructured (NS) W-Cu composite powder was prepared by mechanical alloying (MA), and nanostructured bulk of W-Cu contact material was fabricated by hot pressed sintering in an electrical vacuum furnace. The microstructure, electric conductivity, hardness, breakdown voltage and arcing time of NS W-Cu alloys were measured and compared to conventional W-Cu alloys prepared by powder metallurgy. The results show that microstructural refinement and uniformity can improve the breakdown behavior, the electric arc stability and the arc extinction ability of nanostructured W-Cu contacts materials. Also, the nanostructured W-Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.
基金Funded by the National Natural Science Foundation of China(No.50071043)
文摘Nanostructured ( NS )W-Cu composite powder was prepared by mechanical alloying ( MA ), and nanostructared bulk of W-Cu contact material was fabricated by hot press sintering in an electrical vacuum furnace. The rnicrostructure, electric conductivity, hardness and break down voltage of NS W- Cu alloys were measured and compared to those of conventional W-Cu alloys prepared by powder metallurg'y. The experimental results show that microstructural refinement and uniformity can improve the breakdown behavior and the electric arc stability of nanostructared W- Cu contacts materials. Also, the wanostructured W- Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50071043) the Natural Science Foundation ofShaanxi Province, China (No. 2004E105).
文摘The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by scanning eleclion microscopy. It is concluded that the nanocomposite W-Cu electrical contact material shows a characteristic of spreading arcs. The arc breakdown of a commercially used W-Cu alloy was limited in a few areas, and its average arc erosion rate is twice as large as that of the former. Furthermore, it is also proved that the arc extinction ability and arc stability of the nanocomposite W-Cu material are excellent, and melting is the major failure modality in the make-and-break operation of arcs.
文摘W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosion resistance and the advantages of Cu - high heat conductivity and ductility. Four different fabrication processes for W/Cu or Mo/Cu, including hot-pressing, Cu infiltration of sintered porosity-graded W skeleton, spark plasma sintering and plasma spraying, were investigated and compared. It was foundthat the hot-pressing process is difficult to keep the designed composition gradient, while the other three processes are successful in making W/Cu or Mo/Cu FGM. Meanwhile, microstructures and composition gradients are analyzed with SEM and EDAX.
文摘Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.
文摘The infiltration mechanism, which has great significance for the quality control of electrieal contact material made from W-Cu, W-Ag alloys with high content of tungsten, has been studied. And a directive infiltration technology for improving the product quality and gaining a better economic benefit has been developed.