A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1...A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1-butanol / cyclohexane/phosphate buffer solution. The result shows that when the ratio of mol concentration of 1-butanol to 1-hexanoic acid is about 3.0, the initial rate V0 get the maximum values. This phenomenon was explained by the modified fishlike phase diagrams.展开更多
The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The bro...The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The broad peak obtained for hydroxy(O-H) of water has been resolved by least square curve-fitting. It has been observed that the water solubilized in microemul-sion droplets has four states, i.e. bound water with sulfo-group, free water, bound water with sodium counterion in the water pool of microemulsion droplets and a small amount of trapped water in the palisade layer of microemulsion droplets. The following have also been determined: the aggregation number (n), the radius of the water pool in the microemulsions(rw), the thickness of the bound water with sulfo-group(d1), the thickness of the bound water with sodium counterion(d2), the total thickness of the bound water (d) and the effective area of head groups of AOT(AAOT).展开更多
Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscop...Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, and electron diffraction. The results indicate that the size and the shape of the rice-like CdS particles can be influenced by the molar ratio of water to the surfactant(w value) and the reactant concentrations.展开更多
Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respec...Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respectively.The ultrafine Al2O3 particles are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)and their size and distribution are measured. The effects of water, surfactallt and reactant concentrations on the particlesize and distribution are studied. The results show that the particle size and distribution can be changed by varying thepreparation conditions, and the size of the microemulsion droplets has a controlling effect on the size of the pafticles. A. possible mechanism of ultrafine particles (UFPs) prepared by microemulsions is proposed.展开更多
Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have b...Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have been investigated by least square curve fitting. The results indicate that an asymmetric adsorbed peak of carbonyl stretching vibration of AOT molecule is situated in (1739 ± 1) and (1725 ± 2) cm-1. The two peaks correspond to different carbonyls in gauche conformation and trans conformation of AOT molecules, respectively. With different water contents (W 0), the variations of peak intensity ratio (I r1= I 1739/I 1725) reflect the change of the ratio for the two conformation populations and the variations of the effective head-group area of AOT molecule have relations to the ratio of two conformation populations.展开更多
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ...Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.展开更多
Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode...Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.展开更多
Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophil...Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.展开更多
Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 ...Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 am exhibit a well-crystallized one-dimensional (1D) structure over several hundreds nanometers in length and mainly grow along the 〈111〉 direction. However, without CTAB, only cubic and hexagonal bulks are obtained. Without emulsifier, short and thick nanowhiskers can be prepared but they are apt to agglomerate. The possible growth mechanism of Cu2O nanowhiskers is speculated. The surfactant and the microemulsion system are related to the 1D shape formation and the even dispersion of Cu2O nanomaterials, respectively.展开更多
文摘A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54/1-butanol / cyclohexane/phosphate buffer solution. The result shows that when the ratio of mol concentration of 1-butanol to 1-hexanoic acid is about 3.0, the initial rate V0 get the maximum values. This phenomenon was explained by the modified fishlike phase diagrams.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 299730231), VSF of Ministry of Education of China and State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation.
文摘The states of water in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane/water reverse(W/O) microemulsions system have been investigated by using Fourier transform infrared spectroscopy(FT-IR) technique. The broad peak obtained for hydroxy(O-H) of water has been resolved by least square curve-fitting. It has been observed that the water solubilized in microemul-sion droplets has four states, i.e. bound water with sulfo-group, free water, bound water with sodium counterion in the water pool of microemulsion droplets and a small amount of trapped water in the palisade layer of microemulsion droplets. The following have also been determined: the aggregation number (n), the radius of the water pool in the microemulsions(rw), the thickness of the bound water with sulfo-group(d1), the thickness of the bound water with sodium counterion(d2), the total thickness of the bound water (d) and the effective area of head groups of AOT(AAOT).
文摘Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, and electron diffraction. The results indicate that the size and the shape of the rice-like CdS particles can be influenced by the molar ratio of water to the surfactant(w value) and the reactant concentrations.
文摘Ultrafine γ-A12O3 particles are synthesized in Triton X- 10 0/n - hexanol/cycloh exan e/wat er water in o if(w/o )Inicroemulsion by mixing two separately prepared microemulsions containing Al(NO)3 and (Wb)ZCO, respectively.The ultrafine Al2O3 particles are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)and their size and distribution are measured. The effects of water, surfactallt and reactant concentrations on the particlesize and distribution are studied. The results show that the particle size and distribution can be changed by varying thepreparation conditions, and the size of the microemulsion droplets has a controlling effect on the size of the pafticles. A. possible mechanism of ultrafine particles (UFPs) prepared by microemulsions is proposed.
基金This work was supported by the National Natural Science Foundation of China (Grant No.29973023) Visiting Scholar Foundation of Ministry of Education and State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum Institu
文摘Using Fourier transform infrared(FT-IR) spectroscopy technique, the carbonyl stretching vibration bands of AOT in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse (W/O) microemulsions system have been investigated by least square curve fitting. The results indicate that an asymmetric adsorbed peak of carbonyl stretching vibration of AOT molecule is situated in (1739 ± 1) and (1725 ± 2) cm-1. The two peaks correspond to different carbonyls in gauche conformation and trans conformation of AOT molecules, respectively. With different water contents (W 0), the variations of peak intensity ratio (I r1= I 1739/I 1725) reflect the change of the ratio for the two conformation populations and the variations of the effective head-group area of AOT molecule have relations to the ratio of two conformation populations.
基金Supported by the Trans-century Training Programme Foundation for the Talents by the Ministry of Education of China (No.2002-48).
文摘Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.
基金support of this research by National Natural Science Foundation of China(52172110)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBS-LY-SLH029)+1 种基金the“Scientific and Technical Innovation Action Plan”Hong Kong,Macao and Taiwan Science&Technology Cooperation Project of Shanghai Science and Technology Committee(21520760500)BL14W1 beamline of Shanghai Synchrotron Radiation Facility(SSRF).
文摘Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.
基金the support from the National Key Research and Development Program of China (2021YFB3801303)the National Natural Science Foundation of China (21838005, 21921006)the Key Scientific Research and Development Projects of Jiangsu Province (BE201800901)。
文摘Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.
基金This work was financially supported by the National Natural Science Foundation of China (No. 20207002).
文摘Dispersed cuprite (Cu2O) nanowhiskers were synthesized in a water/butanol/cyclohexane/cetyl trimethyl ammonium bromide (CTAB) water-in-oil microemulsion system at 25℃. The nanowhiskers with a diameter of about 8 am exhibit a well-crystallized one-dimensional (1D) structure over several hundreds nanometers in length and mainly grow along the 〈111〉 direction. However, without CTAB, only cubic and hexagonal bulks are obtained. Without emulsifier, short and thick nanowhiskers can be prepared but they are apt to agglomerate. The possible growth mechanism of Cu2O nanowhiskers is speculated. The surfactant and the microemulsion system are related to the 1D shape formation and the even dispersion of Cu2O nanomaterials, respectively.