研究了钨含量为36%,Ni与Fe质量比为7/3和9/1的两种W Ni Fe三元合金的预应变时效硬度变化规律,用X射线衍射鉴定了时效后两种合金的物相组成,并用透射电镜观察其微观结构。结果表明:Ni与Fe质量比为7/3的W Ni Fe三元合金在800℃下进行预应...研究了钨含量为36%,Ni与Fe质量比为7/3和9/1的两种W Ni Fe三元合金的预应变时效硬度变化规律,用X射线衍射鉴定了时效后两种合金的物相组成,并用透射电镜观察其微观结构。结果表明:Ni与Fe质量比为7/3的W Ni Fe三元合金在800℃下进行预应变时效时,硬度随时间增加而单调降低;相同条件下Ni与Fe质量比为9/1的W Ni Fe三元合金时效初期硬度下降,但随时间延长硬度又逐步提高。X射线衍射物相鉴定和透射电子显微分析发现:Ni与Fe质量比为7/3的合金在预应变时效过程中没有明显沉淀析出物,其时效硬度下降是固溶度降低、残余应力消除以及回复与再结晶的结果;而Ni与Fe质量比为9/1的合金经预应变时效后析出了细小弥散的β相,其硬度变化存在两种机制,一种是固溶度降低、残余应力消除和回复与再结晶引起软化,另一种是细小β相沉淀析出导致弥散强化。展开更多
Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution i...Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.展开更多
The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were inve...The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.展开更多
文摘研究了钨含量为36%,Ni与Fe质量比为7/3和9/1的两种W Ni Fe三元合金的预应变时效硬度变化规律,用X射线衍射鉴定了时效后两种合金的物相组成,并用透射电镜观察其微观结构。结果表明:Ni与Fe质量比为7/3的W Ni Fe三元合金在800℃下进行预应变时效时,硬度随时间增加而单调降低;相同条件下Ni与Fe质量比为9/1的W Ni Fe三元合金时效初期硬度下降,但随时间延长硬度又逐步提高。X射线衍射物相鉴定和透射电子显微分析发现:Ni与Fe质量比为7/3的合金在预应变时效过程中没有明显沉淀析出物,其时效硬度下降是固溶度降低、残余应力消除以及回复与再结晶的结果;而Ni与Fe质量比为9/1的合金经预应变时效后析出了细小弥散的β相,其硬度变化存在两种机制,一种是固溶度降低、残余应力消除和回复与再结晶引起软化,另一种是细小β相沉淀析出导致弥散强化。
基金Project (2010CB635104) supported by the National Basic Research Program of ChinaProject (2007AA03Z112) supported by the National High-Tech Research and Development Program of China+2 种基金Project (9140A18040709JW1601) supported by the Advanced Research Fund of DOD, ChinaProject (2009ZZ0019) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (NCET-10-0364) supported by the Program for New Century Excellent Talents in University, China
文摘Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.
文摘The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.