Gorenstein injective modules and dimensions have been studied extensively by many authors. In this paper, we investigate Gorenstein injective modules and dimensions relative to a Wakamatsu tilting module.
Let A and F be artin algebras and ∧UГa paper, we first introduce the notion of k-Gorenstein faithfully balanced selforthogonal bimodule. In this modules with respect to ∧UГ and then characterize it in terms of the...Let A and F be artin algebras and ∧UГa paper, we first introduce the notion of k-Gorenstein faithfully balanced selforthogonal bimodule. In this modules with respect to ∧UГ and then characterize it in terms of the U-resolution dimension of some special injective modules and the property of the functors Ext^i (Ext^i (-, U), U) preserving monomorphisms, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. In addition, we give some properties of ∧UГwith finite left or right injective dimension.展开更多
In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get th...In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get that complexes of W^--Gorenstein modules are actually W-Gorenstein complexes whenever W is a subcategory of R-modules satisfying W⊥W,where W^- is the subcategory of exact complexes with all cycles in W.We also study when all cycles of a W-Gorenstein complexes are W^--Gorenstein modules.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11026141,11071111)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. D7080064,Y6100173)
文摘Gorenstein injective modules and dimensions have been studied extensively by many authors. In this paper, we investigate Gorenstein injective modules and dimensions relative to a Wakamatsu tilting module.
基金Research partially supported by Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20030284033,20060284002)NSF of Jiangsu Province of China(Grant No.BK2005207)
文摘Let A and F be artin algebras and ∧UГa paper, we first introduce the notion of k-Gorenstein faithfully balanced selforthogonal bimodule. In this modules with respect to ∧UГ and then characterize it in terms of the U-resolution dimension of some special injective modules and the property of the functors Ext^i (Ext^i (-, U), U) preserving monomorphisms, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. In addition, we give some properties of ∧UГwith finite left or right injective dimension.
基金Supported by National Natural Science Foundation of China(Grant Nos.11301240,11371187 and 11101197)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant No.2012020)
文摘In this paper,we give a relationship between projective generators(resp.,injective cogenerators) in the category of R-modules and the counterparts in the category of complexes of R-modules.As a consequence,we get that complexes of W^--Gorenstein modules are actually W-Gorenstein complexes whenever W is a subcategory of R-modules satisfying W⊥W,where W^- is the subcategory of exact complexes with all cycles in W.We also study when all cycles of a W-Gorenstein complexes are W^--Gorenstein modules.
基金Supported by the National Natural Science Foundation of China(11161006, 11171142) Supported by the Natural Science Foundation of Guangxi Province(2011GXNSFA018144, 018139, 2010GXNSFB 013048, 0991102)+2 种基金 Supported by the Guangxi New Century 1000 Talents Project Supported by the Guangxi Graduate Student Education Innovation Project(2011106030701M06) Supported by the SRF of Guangxi Education Committee
文摘In this paper we investigate strongly regular rings. In terms of W-ideals of rings some characterizations of strongly regular rings are given.