引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证...引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证明了弱Domain上的Scott连续映射保局部基当且仅当它保Weakly way below关系。展开更多
In this paper, we investigate the spinor field realizations of the W2,4 algebra, making use of the fact that the W2,4 algebra can be linearized through the addition of a spin-1 current. And then the nilpotent BRST cha...In this paper, we investigate the spinor field realizations of the W2,4 algebra, making use of the fact that the W2,4 algebra can be linearized through the addition of a spin-1 current. And then the nilpotent BRST charges of the spinor non-critical W2,4 string were built with these realizations.展开更多
文摘引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证明了弱Domain上的Scott连续映射保局部基当且仅当它保Weakly way below关系。
基金The project supported by National Natural Science Foundation of China under Grant No. 10275030. It is a pleasure to thank Prof. Y.S. Duan and Dr. H. Wei for useful discussions. We have also made extensive use of a Mathematica package for calculating 0PEs, written by Prof. K. Thielemans.
文摘In this paper, we investigate the spinor field realizations of the W2,4 algebra, making use of the fact that the W2,4 algebra can be linearized through the addition of a spin-1 current. And then the nilpotent BRST charges of the spinor non-critical W2,4 string were built with these realizations.