Abstract According to the protocol of Agrawal et al., we propose a cavity QED scheme for realization of teleportation and dense coding. Instead of using EPR states and GHZ states, our scheme is more insensitive to the...Abstract According to the protocol of Agrawal et al., we propose a cavity QED scheme for realization of teleportation and dense coding. Instead of using EPR states and GHZ states, our scheme is more insensitive to the loss of one particle by using a W-class state as a quantum channel. Besides, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure.展开更多
The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are ...The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.展开更多
We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement ...We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement and is insensitive to both the cavity decay and the thermal field.展开更多
Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partial...Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low-Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics(QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low-Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ...We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.展开更多
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep...Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.展开更多
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter...In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter physics,representing the first identification of topological quantum states.展开更多
The study comparatively analysed the socioeconomic characteristics and digital literacy level of Agricultural Extension personnel (AEP) in Ebonyi and Imo States, South-East, Nigeria. The specific objectives were to de...The study comparatively analysed the socioeconomic characteristics and digital literacy level of Agricultural Extension personnel (AEP) in Ebonyi and Imo States, South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in Ebonyi and Imo States, and to ascertain the digital literacy level of AEP in the studied states. Purposive sampling technique was used to select 312 Agricultural Extension personnel (132 from Ebonyi State Agricultural Development Program and 180 from Imo State Agricultural Development Program) for the study. Data were collected through the use of validated and structured questionnaire, and administered through the help of well-trained enumerators. Data were analysed using simple descriptive statistical tools such as percentages mean score, standard deviation and weighted mean. Findings indicated that they were more male in the both States (55.3% and 57.8%) for Ebonyi and Imo State respectively and that the average age of AEP in Ebonyi and Imo States were 44.7 years and 49.2 years respectively. It was further revealed that the majority (77.3% and 82.8%) had B.Sc./HND as their highest academic qualifications, belonged to professional organisations (62.1% and 75%), and were earning an average monthly income of N58,798 and N62,648 for Ebonyi and Imo State respectively. Also, it was revealed that their mean years of service were 12.4 years and 13.4 years for Ebonyi and Imo State respectively. Almost all of them (87.9% and 95.0%) own a smartphone, had access to the internet (80.3% and 90.0%), but do not own a laptop/ipad (82.6% and 72.8%) for Ebon-yi and Imo State respectively. Results further revealed that Agricultural extension personnel in both Ebonyi and Imo State respectively had low digital literacy level ( = 2.41 and 2.32). The study concluded that AEP in Ebonyi and Imo State respectively had similar socioeconomic characteristics and low level of digital literacy. The study recommended that the management of ADPs in both Ebonyi and Imo State should ensure the training of AEP in digital skills to enhance their digital literacy level to enable them use digital technologies in their work.展开更多
Motivated by the determination for the spin-parity quantum numbers of the X(2370)meson at BESⅢ,we extend our dispersive analysis on hadronic ground states to excited states.The idea is to start with the dispersion re...Motivated by the determination for the spin-parity quantum numbers of the X(2370)meson at BESⅢ,we extend our dispersive analysis on hadronic ground states to excited states.The idea is to start with the dispersion relation which a correlation function obeys,and subtract the known ground-state contribution from the involved spectral density.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
We study the chiral bound states in a coupled-resonator array with staggered hopping strengths,which interacts with a two-level small atom through a single coupling point or two adjacent ones.In addition to the two ty...We study the chiral bound states in a coupled-resonator array with staggered hopping strengths,which interacts with a two-level small atom through a single coupling point or two adjacent ones.In addition to the two typical bound states found above and below the energy bands,this system presents an extraordinary chiral bound state located within the energy gap.We use the chirality to quantify the breaking of the mirror symmetry.We find that the chirality value undergoes continuous changes by tuning the coupling strengths.The preferred direction of the chirality is controlled not only by the competition between the intracell and the intercell hoppings in the coupled-resonator array,but also by the coherence between the two coupling points.In the case with one coupling point,the chirality values varies monotonously with difference between the intracell hopping and the intercell hoppings.While in the case with two coupling points,due to the coherence between the two coupling points the perfect chiral states can be obtained.展开更多
Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic st...Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.展开更多
We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and o...We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.展开更多
We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splittin...We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10674025Funds from Key Laboratory of Quantum Information of University of Science and Technology of China
文摘Abstract According to the protocol of Agrawal et al., we propose a cavity QED scheme for realization of teleportation and dense coding. Instead of using EPR states and GHZ states, our scheme is more insensitive to the loss of one particle by using a W-class state as a quantum channel. Besides, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure.
基金Project supported by the National Natural Science Foundation of China(Grant No.12301580).
文摘The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.
基金Supported by the National Natural Science Foundation of China under Grant No. 60807014the Natural Science Foundation of Jiangxi Province under Grant No. 2009GZW0005+1 种基金the Research Foundation of State Key Laboratory of Advanced Optical Communication Systemsand Networks,Shanghai Jiao Tong Universitythe Research Foundation of the Education Department of Jiangxi Province under GrantNo. GJJ09153
文摘We demonstrate that four sets of W-class states can be used to realize the deterministic quantum information splitting of an arbitrary three-atom state in cavity QED.The scheme does not involve Bell-state measurement and is insensitive to both the cavity decay and the thermal field.
基金supported by the National Natural Science Foundation of China(Grant Nos.61471050,61377097,11404031 and 61571060)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.151063)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2015RC28)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2015ZT05)
文摘Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low-Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics(QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low-Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金the National Natural Science Foun-dation of China(Grant No.12204311)the Jiangxi Natural Science Foundation(Grant No.20224BAB211025).
文摘We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
基金Collaborative Innovation Project of University,Anhui Province(Grant No.GXXT-2022-088).
文摘Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
文摘In 1980,scientist Klaus von Klitzing discovered the quantum Hall effect[1],a groundbreaking achievement that earned him the Nobel Prize in Physics in 1985.This discovery was a significant milestone in condensed matter physics,representing the first identification of topological quantum states.
文摘The study comparatively analysed the socioeconomic characteristics and digital literacy level of Agricultural Extension personnel (AEP) in Ebonyi and Imo States, South-East, Nigeria. The specific objectives were to describe the socioeconomic characteristics of agricultural extension personnel in Ebonyi and Imo States, and to ascertain the digital literacy level of AEP in the studied states. Purposive sampling technique was used to select 312 Agricultural Extension personnel (132 from Ebonyi State Agricultural Development Program and 180 from Imo State Agricultural Development Program) for the study. Data were collected through the use of validated and structured questionnaire, and administered through the help of well-trained enumerators. Data were analysed using simple descriptive statistical tools such as percentages mean score, standard deviation and weighted mean. Findings indicated that they were more male in the both States (55.3% and 57.8%) for Ebonyi and Imo State respectively and that the average age of AEP in Ebonyi and Imo States were 44.7 years and 49.2 years respectively. It was further revealed that the majority (77.3% and 82.8%) had B.Sc./HND as their highest academic qualifications, belonged to professional organisations (62.1% and 75%), and were earning an average monthly income of N58,798 and N62,648 for Ebonyi and Imo State respectively. Also, it was revealed that their mean years of service were 12.4 years and 13.4 years for Ebonyi and Imo State respectively. Almost all of them (87.9% and 95.0%) own a smartphone, had access to the internet (80.3% and 90.0%), but do not own a laptop/ipad (82.6% and 72.8%) for Ebon-yi and Imo State respectively. Results further revealed that Agricultural extension personnel in both Ebonyi and Imo State respectively had low digital literacy level ( = 2.41 and 2.32). The study concluded that AEP in Ebonyi and Imo State respectively had similar socioeconomic characteristics and low level of digital literacy. The study recommended that the management of ADPs in both Ebonyi and Imo State should ensure the training of AEP in digital skills to enhance their digital literacy level to enable them use digital technologies in their work.
文摘Motivated by the determination for the spin-parity quantum numbers of the X(2370)meson at BESⅢ,we extend our dispersive analysis on hadronic ground states to excited states.The idea is to start with the dispersion relation which a correlation function obeys,and subtract the known ground-state contribution from the involved spectral density.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975095,12075082,11935006,and 12247105)the Major Sci-Tech Program of Hunan Province,China(Grant No.2023ZJ1010)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2019A1515011400 and 2023A151501223).
文摘We study the chiral bound states in a coupled-resonator array with staggered hopping strengths,which interacts with a two-level small atom through a single coupling point or two adjacent ones.In addition to the two typical bound states found above and below the energy bands,this system presents an extraordinary chiral bound state located within the energy gap.We use the chirality to quantify the breaking of the mirror symmetry.We find that the chirality value undergoes continuous changes by tuning the coupling strengths.The preferred direction of the chirality is controlled not only by the competition between the intracell and the intercell hoppings in the coupled-resonator array,but also by the coherence between the two coupling points.In the case with one coupling point,the chirality values varies monotonously with difference between the intracell hopping and the intercell hoppings.While in the case with two coupling points,due to the coherence between the two coupling points the perfect chiral states can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274178 and 12174148)Support of High Performance Computing Center of Jilin Universitythe high-performance computing cluster Tiger@IAMP。
文摘Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
文摘We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802)+3 种基金the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01)the supports of the National Natural Science Foundation of China (Grant No. 12274001)the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09)。
文摘We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.