Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa...The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation.展开更多
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie...Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw...It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.展开更多
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc...With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.展开更多
Specimens of ZM5 magnesium alloy were dipped into the mixed powder of Al and Zn at (390±5) ℃ for 8 h in argon gas protective environment and subjected to surface diffusion alloying processing (SDAP). The ero...Specimens of ZM5 magnesium alloy were dipped into the mixed powder of Al and Zn at (390±5) ℃ for 8 h in argon gas protective environment and subjected to surface diffusion alloying processing (SDAP). The erosion wear behaviors of ZM5 magnesium alloy before and after SDAP were investigated in two different erosion wear environments: oil and quartz environment; tap water and quartz environment. The surfaces of erosion wear specimens exhibited cutting scratch grooves in the oil and quartz environment. Corrosive attack was weak and cutting wear mechanism was responsible for the mass loss. When the erosion wear medium was changed to tap water and quartz environment, corrosion pits and cracks were obviously observed after erosion wear test. The corrosion from tap water and the scour from quartz intensified mass losses. Compared with the untreated specimens, the application of SDAP improved the erosion wear resistance in the same environment.展开更多
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s...A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.展开更多
Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,wh...Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.展开更多
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si...This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs).展开更多
Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor b...Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor biocompatibility are still the bottlenecks of clinical applications for the cardiovascular stents.In particular,how to induce the repair and regeneration of the vascular endothelial with normal physiological functions on the surface of the magnesium alloy stent materials represents the key to its clinical application in the field of cardiovascular stents.It has been believed that it is an ideal way to completely solve the postoperative complications through constructing the multifunctional anti-corrosive bioactive coating on the magnesium alloy surface to induce the formation of vascular endothelium with normal physiological functions.However,how to construct a corrosion-resistant multifunctional bioactive coating with the good endothelial regeneration abilities on the magnesium alloy surface still faces a great challenge.This paper mainly focused on highlighting and summarizing the recent advances in the surface endothelialization of the magnesium alloy materials for the vascular stent,including the bio-inert coating,in-situ immobilization of bioactive molecules on the surface,polymer coating loaded with bioactive factors,novel multifunctional polymer coating,bioactive micropatterns,bioactive layer with glycocalyx-like structure,NO-releasing coating and bioactive sol-gel coating.The advantages and disadvantages of these strategies were discussed and analyzed.Finally,in the senses of future development and clinical application,this paper analyzed and summarized the development direction and prospect of surface endothelialization of the magnesium alloy vascular stents.It is anticipated that this review can give the new cues to the surface endothelialization of the cardiovascular magnesium alloy stents and promote future advancements in this field.展开更多
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa...The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.展开更多
In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied ...In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and...The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region.展开更多
AZ91D surface alloying was investigated through evaporative pattern casting (EPC) technology. Aluminum powder (0.074 to 0.104 mm) was used as the alloying element in the experiment. An alloying coating with excell...AZ91D surface alloying was investigated through evaporative pattern casting (EPC) technology. Aluminum powder (0.074 to 0.104 mm) was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX) analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of/3-MglTAI12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.展开更多
Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to fo...Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties.展开更多
This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were pe...This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were performed on one sample without polishing lines(SS sample)and two samples with polishing lines—one in which the polishing lines were parallel to the rolling direction(RS-RD sample)and the other in which they were parallel to the transverse direction(RS-TD sample).In all three samples,macrocracks were formed in the width direction on the outer surface,where tensile stress was predominantly generated in the longitudinal direction.However,the macrocracks formed in the SS sample were curved because of the merging of uniformly formed fine microcracks,whereas those formed in the RS-TD sample were linear owing to the formation of relatively coarse microcracks along the polishing lines.The bendability of the samples was in the order of SS>RS-RD>RS-TD,and their limiting bending depths were 4.8,4.6,and 4.4 mm,respectively.In the presence of mechanical-polishing-induced surface roughness,polishing lines perpendicular to the direction of the major stress(i.e.,tensile stress along the longitudinal direction)resulted in a greater degree of stress concentration on the outer surface of the bending specimen.This higher stress concentration promoted the formation of undesirable{10–11}contraction and{10–11}–{10–12}double twins—which typically act as crack initiation sites—and thereby facilitated crack generation and propagation.Consequently,the surface roughness caused premature fracture during bending deformation,which,in turn,caused deterioration of the bendability of the rolled Mg alloy.展开更多
Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory ...Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory was employed to investigate the nonlinear features of the burnishing system.The experimental results show that the power spectrum is broadband and continuous,and the Lyapunov exponentλis positive,proving that burnishing has chaotic characteristics.The chaotic characteristic parameter,the correlation dimension D,is sensitive to the time behavior of the system and is used to establish the corresponding relationship with the surface roughness.The correlation dimension was the largest,when the surface roughness was the smallest.Furthermore,when the correlation dimension curve decreases,the roughness curve increases.The correlation dimension and surface roughness exhibit opposite variation trends.The higher the correlation dimension,the lower the surface roughness.The surface roughness of the aluminum alloy can be characterized online by calculating the correlation dimension during burnishing.展开更多
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金grateful for thefinancial support of National Natural Science Foundation of China(Grant Nos.52311540154 and 52175410).
文摘The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation.
基金support provided by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Hong Kong General Research Fund(GRF)Scheme(Ref:CityU 11216219)+2 种基金the Research Grants Council of Hong Kong(Project No:AoE/M-402/20)Shenzhen Science and Technology Program:JCYJ20220818101204010the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
基金the National Key Research and Development Program of China(2018YFA0703400)the Young Scientists Fund of the National Natural Science Foundation of China(52205447)Changjiang Scholars Program of the Chinese Ministry of Education。
文摘It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.
文摘With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.
基金Project (2011JY009) supported by Education Department of Shaanxi Province, China
文摘Specimens of ZM5 magnesium alloy were dipped into the mixed powder of Al and Zn at (390±5) ℃ for 8 h in argon gas protective environment and subjected to surface diffusion alloying processing (SDAP). The erosion wear behaviors of ZM5 magnesium alloy before and after SDAP were investigated in two different erosion wear environments: oil and quartz environment; tap water and quartz environment. The surfaces of erosion wear specimens exhibited cutting scratch grooves in the oil and quartz environment. Corrosive attack was weak and cutting wear mechanism was responsible for the mass loss. When the erosion wear medium was changed to tap water and quartz environment, corrosion pits and cracks were obviously observed after erosion wear test. The corrosion from tap water and the scour from quartz intensified mass losses. Compared with the untreated specimens, the application of SDAP improved the erosion wear resistance in the same environment.
基金The research is supported by the National Science Foundation of China(key project grant No.51731008 and general project grant No.51671163).
文摘A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys.
文摘Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.
文摘This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs).
基金financially supported by the National Natural Science Foundation of China(31870952)Natural Science Foundation of Jiangsu Province of China(BK20181480)。
文摘Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor biocompatibility are still the bottlenecks of clinical applications for the cardiovascular stents.In particular,how to induce the repair and regeneration of the vascular endothelial with normal physiological functions on the surface of the magnesium alloy stent materials represents the key to its clinical application in the field of cardiovascular stents.It has been believed that it is an ideal way to completely solve the postoperative complications through constructing the multifunctional anti-corrosive bioactive coating on the magnesium alloy surface to induce the formation of vascular endothelium with normal physiological functions.However,how to construct a corrosion-resistant multifunctional bioactive coating with the good endothelial regeneration abilities on the magnesium alloy surface still faces a great challenge.This paper mainly focused on highlighting and summarizing the recent advances in the surface endothelialization of the magnesium alloy materials for the vascular stent,including the bio-inert coating,in-situ immobilization of bioactive molecules on the surface,polymer coating loaded with bioactive factors,novel multifunctional polymer coating,bioactive micropatterns,bioactive layer with glycocalyx-like structure,NO-releasing coating and bioactive sol-gel coating.The advantages and disadvantages of these strategies were discussed and analyzed.Finally,in the senses of future development and clinical application,this paper analyzed and summarized the development direction and prospect of surface endothelialization of the magnesium alloy vascular stents.It is anticipated that this review can give the new cues to the surface endothelialization of the cardiovascular magnesium alloy stents and promote future advancements in this field.
基金supported by the National Natural Science Foundation of China(Grants 51865028)the Gansu Provincial Science and Technology Planning Project(Grant No.20YF8GA056).
文摘The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.
文摘In order to improve the wear resistance of titanium alloy Ti6Al4V and high temperature oxidation resistance of intermetallic compound TiAl, the Double Glow Plasma Surface Alloying Technique (DG technique) was applied to modify the surface properties of these materials. Mo, Nb, Cr, Ni were diffused into the substrate materials to form alloyed layers with different properties. This paper shows the microstructure, microhardnesses, distributions of the alloy elements on the alloyed layers. Wear and high temperature oxidation tests were carried out. Test results indicate that the wear resistance of Ti6Al4V and the high temperature oxidation resistance of TiAl were improved significantly.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.
基金Funded by the High Technology Research Project of Jiangsu Province (No. BG2007046)the Productive Translation Item of College Scientific Research of Jiangsu Province Educational Office( No. JHB06-04)
文摘The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region.
基金supported by the National Natural Science Foundation of China (No.50775085)
文摘AZ91D surface alloying was investigated through evaporative pattern casting (EPC) technology. Aluminum powder (0.074 to 0.104 mm) was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX) analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of/3-MglTAI12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.
文摘Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science,ICT and Future Planning(MSIP,South Korea)(No.2019R1A2C1085272).
文摘This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were performed on one sample without polishing lines(SS sample)and two samples with polishing lines—one in which the polishing lines were parallel to the rolling direction(RS-RD sample)and the other in which they were parallel to the transverse direction(RS-TD sample).In all three samples,macrocracks were formed in the width direction on the outer surface,where tensile stress was predominantly generated in the longitudinal direction.However,the macrocracks formed in the SS sample were curved because of the merging of uniformly formed fine microcracks,whereas those formed in the RS-TD sample were linear owing to the formation of relatively coarse microcracks along the polishing lines.The bendability of the samples was in the order of SS>RS-RD>RS-TD,and their limiting bending depths were 4.8,4.6,and 4.4 mm,respectively.In the presence of mechanical-polishing-induced surface roughness,polishing lines perpendicular to the direction of the major stress(i.e.,tensile stress along the longitudinal direction)resulted in a greater degree of stress concentration on the outer surface of the bending specimen.This higher stress concentration promoted the formation of undesirable{10–11}contraction and{10–11}–{10–12}double twins—which typically act as crack initiation sites—and thereby facilitated crack generation and propagation.Consequently,the surface roughness caused premature fracture during bending deformation,which,in turn,caused deterioration of the bendability of the rolled Mg alloy.
基金National Natural Science Foundation of China(Grant Nos.52175194,52105215,52075047)Zhejiang Provincial Natural Science Foundation of China(LR23E050002)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-A2019008)Key Laboratory of E&M(Zhejiang University of Technology),Ministry of Education&Zhejiang Province(Grant No.EM2021120103)。
文摘Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory was employed to investigate the nonlinear features of the burnishing system.The experimental results show that the power spectrum is broadband and continuous,and the Lyapunov exponentλis positive,proving that burnishing has chaotic characteristics.The chaotic characteristic parameter,the correlation dimension D,is sensitive to the time behavior of the system and is used to establish the corresponding relationship with the surface roughness.The correlation dimension was the largest,when the surface roughness was the smallest.Furthermore,when the correlation dimension curve decreases,the roughness curve increases.The correlation dimension and surface roughness exhibit opposite variation trends.The higher the correlation dimension,the lower the surface roughness.The surface roughness of the aluminum alloy can be characterized online by calculating the correlation dimension during burnishing.