This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the cataly...This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.展开更多
基金Financial support by the Spanish Government(RTI2018-099668-B-C21,PGC2018-097277-B-100,and SEV-2016-0683)the Severo Ochoa Excellence Program(SVP-2014-068669)the “La Caixa-Severo Ochoa” Foundation,respectively,for their fellowships~~
文摘This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.