通过高能球磨方法制备了系列W-TaC混合粉末,采用放电等离子体烧结(SPS)制备出弥散强化W-TaC样品,并对W-TaC样品的密度、硬度和微观组织进行了分析。利用60 k W电子束材料测试平台(EMS-60)对烧结W-TaC的耐瞬态热冲击性能进行测试,分别模...通过高能球磨方法制备了系列W-TaC混合粉末,采用放电等离子体烧结(SPS)制备出弥散强化W-TaC样品,并对W-TaC样品的密度、硬度和微观组织进行了分析。利用60 k W电子束材料测试平台(EMS-60)对烧结W-TaC的耐瞬态热冲击性能进行测试,分别模拟了等离子体破裂和边缘局域模2种热负荷。实验后通过扫描电镜观察了样品加载区域的裂纹及熔化情况,通过透射电镜观察分析了材料的微结构特征。结果表明:W-TaC样品在热负荷作用下可以经受功率密度为740 MW/m^2、5 ms的热冲击而不产生裂纹,但在功率密度为550 MW/m^2、100次1 ms的热疲劳下会产生疲劳微裂纹。SEM和TEM分析表明,TaC颗粒在钨晶粒内和晶粒间都有存在,而且TaC会与W形成共格相界和半共格晶界从而增强钨合金的强度。展开更多
Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using sc...Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDS), X-ray diffractometry(XRD) and mechanical properties tests. The results show that the maximum values of hardness and strength are HV 1124 and 2466 MPa respectively when 0.4% TaC is added. When the content of TaC is more than 0.6%, the grain size of WC is no longer affected by the amount of TaC, and(W,Ta)C occurs as well. Moreover, the strength and fracture toughness increase and the(Ta+W) content decreases with the increase of TaC content. The dependence of(Ta+W) content on the mechanical properties indicates that(Ta+W) content in Co should be decreased as low as possible to improve the mechanical properties of coarse grained WC-TaC-9Co cemented carbides with the microstructure of WC+γ two phase regions.展开更多
基金Project(2013zzts025)supported by the Fundamental Research Funds for the Central Universities of China
文摘Coarse grained WC-9Co cemented carbides with 0-1.0% TaC(mass fraction) were fabricated by HIP-sintering and gas quenching. The effects of TaC on the microstructures and mechanical properties were investigated using scanning electron microscopy(SEM), energy dispersive X-ray analysis(EDS), X-ray diffractometry(XRD) and mechanical properties tests. The results show that the maximum values of hardness and strength are HV 1124 and 2466 MPa respectively when 0.4% TaC is added. When the content of TaC is more than 0.6%, the grain size of WC is no longer affected by the amount of TaC, and(W,Ta)C occurs as well. Moreover, the strength and fracture toughness increase and the(Ta+W) content decreases with the increase of TaC content. The dependence of(Ta+W) content on the mechanical properties indicates that(Ta+W) content in Co should be decreased as low as possible to improve the mechanical properties of coarse grained WC-TaC-9Co cemented carbides with the microstructure of WC+γ two phase regions.