期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Abelian Real W-Algebras
1
作者 Li Minli Li Bingren Institute of Mathematics, Academia Sinica, Beijing 100080, China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1998年第1期85-90,共6页
In this paper, we point out that most results on abelian (complex) W~*-algebras hold in the real case. Of course, there are differences in homeomorphisms of period 2. Moreover, an abelian real Von Neumann algebra not ... In this paper, we point out that most results on abelian (complex) W~*-algebras hold in the real case. Of course, there are differences in homeomorphisms of period 2. Moreover, an abelian real Von Neumann algebra not containing any minimal projection on a separable real Hilbert space is * isomorphic to L_r~∞([0,1]) (all real functions in L~∞ ([0, 1])), or L~∞([0, 1])(as a real W~*-algebra), or L_r~∞([0,1]) L_∞([0, 1]) (as a real W~*-algebra), and it is different from the complex case. 展开更多
关键词 Real w-algebras Spectral spaces Stonean spaces Minimal projections
原文传递
Coset vertex operator algebras and W-algebras of A-type 被引量:1
2
作者 Tomoyuki Arakawa Cuipo Jiang 《Science China Mathematics》 SCIE CSCD 2018年第2期191-206,共16页
We give an explicit description for a weight three generator of the coset vertex operator algebra C_L_(sln)(l,0)L_(sln)(1,0)(L_(sln)(l+1,0),for n≥2, l≥1. Furthermore, we prove that the nommutant C_L_(sl3)(l,0)L_(sl3... We give an explicit description for a weight three generator of the coset vertex operator algebra C_L_(sln)(l,0)L_(sln)(1,0)(L_(sln)(l+1,0),for n≥2, l≥1. Furthermore, we prove that the nommutant C_L_(sl3)(l,0)L_(sl3)(1,0)(L_(sl3)(l+1,0)) is isomorphic to the W-algebra W_(-3+(l+3)/(l+4))(sl_3), which confirms the conjecture for the sl_3 case that C_L_g(l,0)L_g(1,0)(L_g(l + 1,0)) is isomorphic to W_(-h+(l+h)/(l+h+1))(g) for simaly-laced Lie algebras g with its Coxeter number h for a positive integer l. 展开更多
关键词 w-algebra coset vertex operator algebra rationality
原文传递
Quantizations of the W-Algebra W(2, 2) 被引量:2
3
作者 Jun Bo LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第4期647-656,共10页
We quantize the W-algebra W(2,2), whose Verma modules, Harish-Chandra modules, irreducible weight modules and Lie bialgebra structures have been investigated and determined in a series of papers recently.
关键词 QUANTIZATION the w-algebra W(2 2) quantum groups Lie bialgebras
原文传递
Quantization of a Class of Super W-Agebras
4
作者 Yu Zhang Xiaomin Tang 《Algebra Colloquium》 SCIE CSCD 2022年第4期633-642,共10页
We study a class of super W-algebras whose even part is the Virasoro type Lie algebra W(2,2).We quantize the Lie superbialgebra of the super W-algebra by the Drinfeld twist quantization technique and obtain a class of... We study a class of super W-algebras whose even part is the Virasoro type Lie algebra W(2,2).We quantize the Lie superbialgebra of the super W-algebra by the Drinfeld twist quantization technique and obtain a class of noncommutative and noncocommutative Hopf superalgebras. 展开更多
关键词 QUANTIZATION super w-algebra quantum group Lie superbialgebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部