GIS and remote sensing were utilized for prioritizing the W. Mujib catchment. Fifty three fourth-order sub-watersheds were prioritized based on morphometric analysis of linear and shape parameters. ASTER DEM (v.2), to...GIS and remote sensing were utilized for prioritizing the W. Mujib catchment. Fifty three fourth-order sub-watersheds were prioritized based on morphometric analysis of linear and shape parameters. ASTER DEM (v.2), topographical maps, and Arc GIS (10.1) software, have been employed to delineate the 53 sub-basins, to extract the drainage networks, and to compute the required basic, linear, and shape parameters, and to compile the necessary thematic maps such as elevation and slope categories. The land use/land cover map was generated using ERDAS Imagine (2015), LANDSAT 8 image, and supervised classification (Maximum Likelihood Method). Soil map was digitized using the Arc GIS tool. Each sub-basin is prioritized by assigning ranks based on the calculated compound parameter (Cp). The final score for each sub-basin is ascribed as per erosion threat. The 53 sub-watersheds were grouped into four categories of priority: very high (15 sub-basins, 28.3% of the total), high (17 sub-basins, 32% of the total), moderate (16 sub-basins, 30.2% of the total), and low (5 sub-basins, 9.5% of the total). Sub-basins categorized as very high and high priority (60.3% of the total) are subjected to high erosion risk, thus, creating an urgent need for applying soil and water conservation measures. The validity of the prioritized four groups was tested statistically by means of Discriminant Analysis (DA), and a significant difference was found between the four priority classes. A relatively complete separation exists between the recognized priority classes;thus, they are statistically valid, distinct, and different from each other. The present results intend to help decision makers pay sufficient attention to soil and water conservation programs, and to encourage tree plantation over the government-owned sloping land. Such procedures are essential in order to minimize soil erosion loss, and to increase soil moisture on farms, thus, reducing the impact of recurrent droughts and the possibility of flooding downstream.展开更多
文摘GIS and remote sensing were utilized for prioritizing the W. Mujib catchment. Fifty three fourth-order sub-watersheds were prioritized based on morphometric analysis of linear and shape parameters. ASTER DEM (v.2), topographical maps, and Arc GIS (10.1) software, have been employed to delineate the 53 sub-basins, to extract the drainage networks, and to compute the required basic, linear, and shape parameters, and to compile the necessary thematic maps such as elevation and slope categories. The land use/land cover map was generated using ERDAS Imagine (2015), LANDSAT 8 image, and supervised classification (Maximum Likelihood Method). Soil map was digitized using the Arc GIS tool. Each sub-basin is prioritized by assigning ranks based on the calculated compound parameter (Cp). The final score for each sub-basin is ascribed as per erosion threat. The 53 sub-watersheds were grouped into four categories of priority: very high (15 sub-basins, 28.3% of the total), high (17 sub-basins, 32% of the total), moderate (16 sub-basins, 30.2% of the total), and low (5 sub-basins, 9.5% of the total). Sub-basins categorized as very high and high priority (60.3% of the total) are subjected to high erosion risk, thus, creating an urgent need for applying soil and water conservation measures. The validity of the prioritized four groups was tested statistically by means of Discriminant Analysis (DA), and a significant difference was found between the four priority classes. A relatively complete separation exists between the recognized priority classes;thus, they are statistically valid, distinct, and different from each other. The present results intend to help decision makers pay sufficient attention to soil and water conservation programs, and to encourage tree plantation over the government-owned sloping land. Such procedures are essential in order to minimize soil erosion loss, and to increase soil moisture on farms, thus, reducing the impact of recurrent droughts and the possibility of flooding downstream.