A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
由2篇论文组成的系列论文旨在研究广域闭环控制系统(wide-area closed-loop control system,WACS)中时延的特性。在系列论文第1篇的研究基础上,首先提出估计实际WACS中闭环时延的方法,综合考虑通信时延与操作时延,提出正态分布模型以估...由2篇论文组成的系列论文旨在研究广域闭环控制系统(wide-area closed-loop control system,WACS)中时延的特性。在系列论文第1篇的研究基础上,首先提出估计实际WACS中闭环时延的方法,综合考虑通信时延与操作时延,提出正态分布模型以估计实际系统中的闭环时延分布,并给出确定正态分布模型参数的方法。然后介绍在实际WACS中实测闭环时延的时标对比法。最后,在专用通道与非专用通道的条件下,实测贵州电网WACS中的闭环时延,并将实测结果与使用正态分布模型的估计结果进行对比分析,验证了所提出的正态分布估计模型。该文对时延的分析及测试结果对广域闭环控制的研究及应用具有参考价值。展开更多
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.
文摘由2篇论文组成的系列论文旨在研究广域闭环控制系统(wide-area closed-loop control system,WACS)中时延的特性。在系列论文第1篇的研究基础上,首先提出估计实际WACS中闭环时延的方法,综合考虑通信时延与操作时延,提出正态分布模型以估计实际系统中的闭环时延分布,并给出确定正态分布模型参数的方法。然后介绍在实际WACS中实测闭环时延的时标对比法。最后,在专用通道与非专用通道的条件下,实测贵州电网WACS中的闭环时延,并将实测结果与使用正态分布模型的估计结果进行对比分析,验证了所提出的正态分布估计模型。该文对时延的分析及测试结果对广域闭环控制的研究及应用具有参考价值。