Ce-Zr compounds such as Cc0.68Zr0.3202 solid solution, Ce/Zr nitrate and CeO2/ZrO2 were added into γ-alumina-based slurries, which were then loaded on FeCrAl foils pretreated at 950℃ and 1100℃. The microstructures ...Ce-Zr compounds such as Cc0.68Zr0.3202 solid solution, Ce/Zr nitrate and CeO2/ZrO2 were added into γ-alumina-based slurries, which were then loaded on FeCrAl foils pretreated at 950℃ and 1100℃. The microstructures and adhesion performance between the substrates and the washcoats were measured by SEM, BET surface area, ultrasonic vibration and thermal shock test. The results show that the addition of Ce0.68Zr0.32O2 solid solution, Ce/Zr nitrate and CeO2/ZrO2 into the slurries can improve γ-Al2O3-based washcoat adhesion on FeCrAl foils. Furthermore, ceria-zirconia solid solution increases the adhesion of the washcoat on the surface of an FeCrAl foil than the two others. The specific surface area of this washcoat remains about 4345 m^2/g and the weight loss is below 4.0% even after aging test of 10% steam-containing air at 1050℃ for 20 h.展开更多
Novel CexY1-xO washcoats adhered on the cordierite honeycomb, used as supports for Pd catalysts, were prepared by an impregnation method. It was fotmd that the CexY1-xO washcoats had better adhesion and higher adsorpt...Novel CexY1-xO washcoats adhered on the cordierite honeycomb, used as supports for Pd catalysts, were prepared by an impregnation method. It was fotmd that the CexY1-xO washcoats had better adhesion and higher adsorption efficiency of H2PdCl4, and the optimal component of the washcoat was Ce0.8Y0.2O. Model reaction of catalytic combustion of toluene was chosen to evaluate the performance of the developed Pd/CexY1-xO/substrate catalysts. The results showed that the catalytic performance of the Pd/CexY1-xO/substrate catalysts depended on the component of the washcoats, with the Pd/Ce0.8Y0.2O/substrate catalyst giving the best catalytic activity and thermal stability.展开更多
This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene sphe...This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure interconnection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexdecyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.展开更多
This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene sphe...This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure inter- connection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexde- cyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.展开更多
基金[The work was financially supported by the National Key Basic Research Program of China ("973")(No. 2004CB719503).]
文摘Ce-Zr compounds such as Cc0.68Zr0.3202 solid solution, Ce/Zr nitrate and CeO2/ZrO2 were added into γ-alumina-based slurries, which were then loaded on FeCrAl foils pretreated at 950℃ and 1100℃. The microstructures and adhesion performance between the substrates and the washcoats were measured by SEM, BET surface area, ultrasonic vibration and thermal shock test. The results show that the addition of Ce0.68Zr0.32O2 solid solution, Ce/Zr nitrate and CeO2/ZrO2 into the slurries can improve γ-Al2O3-based washcoat adhesion on FeCrAl foils. Furthermore, ceria-zirconia solid solution increases the adhesion of the washcoat on the surface of an FeCrAl foil than the two others. The specific surface area of this washcoat remains about 4345 m^2/g and the weight loss is below 4.0% even after aging test of 10% steam-containing air at 1050℃ for 20 h.
基金the Natural Science Foundation of China (Grant 20473075)
文摘Novel CexY1-xO washcoats adhered on the cordierite honeycomb, used as supports for Pd catalysts, were prepared by an impregnation method. It was fotmd that the CexY1-xO washcoats had better adhesion and higher adsorption efficiency of H2PdCl4, and the optimal component of the washcoat was Ce0.8Y0.2O. Model reaction of catalytic combustion of toluene was chosen to evaluate the performance of the developed Pd/CexY1-xO/substrate catalysts. The results showed that the catalytic performance of the Pd/CexY1-xO/substrate catalysts depended on the component of the washcoats, with the Pd/Ce0.8Y0.2O/substrate catalyst giving the best catalytic activity and thermal stability.
文摘This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure interconnection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexdecyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.
基金NUFFIC, CSC and the Scientific Research Fund of Hunan Provincial Education Department (No.04B060).
文摘This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure inter- connection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexde- cyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.