Recent advancements in wireless technology have tested Wireless Balloon Networks (WBNs) as an ideal solution for the provision of internet facilities in deprived and challenging areas. A few high profile companies, su...Recent advancements in wireless technology have tested Wireless Balloon Networks (WBNs) as an ideal solution for the provision of internet facilities in deprived and challenging areas. A few high profile companies, such as Google, Space Data Inc., etc., have already made news by initiating projects based on high-altitude WBNs in order to provide internet facilities in remote areas. Unfortunately, the technical details have mainly been kept confidential so far. In this paper, we attempt to analyze the percolation properties of large-scale WBNs, considering both homogenous and heterogenous wireless nodes. In order to do so, we modeled a WBN as a large-scale random network where the path-loss models of homogenous and heterogenous WBNs were reduced to GDM (Gilbert's Disk Model) and RGDM (Random Gilbert's Disk Model), respectively. The bounds of the critical density regime were derived for both percolation models. Additionally, this paper implemented an experimental test bed for the WBN percolation model. Consequently, the findings of this research may prove crucial in estimating critical network properties.展开更多
基金National Science Foundation 1451629, 1401711, 1429120 and 1407882.
文摘Recent advancements in wireless technology have tested Wireless Balloon Networks (WBNs) as an ideal solution for the provision of internet facilities in deprived and challenging areas. A few high profile companies, such as Google, Space Data Inc., etc., have already made news by initiating projects based on high-altitude WBNs in order to provide internet facilities in remote areas. Unfortunately, the technical details have mainly been kept confidential so far. In this paper, we attempt to analyze the percolation properties of large-scale WBNs, considering both homogenous and heterogenous wireless nodes. In order to do so, we modeled a WBN as a large-scale random network where the path-loss models of homogenous and heterogenous WBNs were reduced to GDM (Gilbert's Disk Model) and RGDM (Random Gilbert's Disk Model), respectively. The bounds of the critical density regime were derived for both percolation models. Additionally, this paper implemented an experimental test bed for the WBN percolation model. Consequently, the findings of this research may prove crucial in estimating critical network properties.