期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于EdgeBoard的智能车系统设计与实现 被引量:3
1
作者 曹月花 李辉 《现代电子技术》 2022年第18期166-170,共5页
文中提出一种基于EdgeBoard的智能车系统,主要研究内容包括智能车车模的搭建、深度学习模型的训练、智能车控制等。首先,在百度AI Studio平台上部署飞桨深度学习框架,以计算卡EdgeBoard为主处理器,板载ATmega2560内核的WBOT控制器为下位... 文中提出一种基于EdgeBoard的智能车系统,主要研究内容包括智能车车模的搭建、深度学习模型的训练、智能车控制等。首先,在百度AI Studio平台上部署飞桨深度学习框架,以计算卡EdgeBoard为主处理器,板载ATmega2560内核的WBOT控制器为下位机,CMOS高分辨率摄像头为视觉模块,闭环编码电机和智能舵机为动力装置,运用超声波、磁敏等各类传感器并使用CNC铝板搭建车模结构,从而构建一套完整的智能车模型;其次,通过深度学习训练模型,实现道路数据信息采集和数据的预处理,构建深度学习框架对数据集进行训练;再应用智能车的控制算法实现训练完成的模型调用、获取摄像头拍摄的数据、EdgeBoard对拍摄到的道路信息和任务信息的处理、EdgeBoard主处理器与WBOT下位机的通信、WBOT命令的接收以及控制指令的发送等功能;最后,通过实验对该智能系统的有效性进行验证。结果表明:所设计的智能车可以在设定的赛道上实现自主寻迹、定点停车、物料搬运、任务识别等功能;相比较于传统的智能车,文中装载深度学习模型的智能车寻迹效率更快,识别率高,对车道限制少,具有较强的鲁棒性和抗干扰能力,可以应用于智能交通系统中。 展开更多
关键词 智能车 百度飞桨 深度学习 控制算法 EdgeBoard wbot控制器 人工智能 自主寻迹
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部