Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using...Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoV>WC coating> Zr/WC composite coating.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolyte...Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].展开更多
The effects of additives(polyethylene glycol(PEG),sodium dodecyl sulfate(SDS))and WC nano-powder on the microstructure,relative density,hardness and electrical conductivity of electroplated WC−Cu composite were invest...The effects of additives(polyethylene glycol(PEG),sodium dodecyl sulfate(SDS))and WC nano-powder on the microstructure,relative density,hardness and electrical conductivity of electroplated WC−Cu composite were investigated.The preparation mechanism was also studied.The microstructure of samples was analyzed by XRD,SEM,EDS,TEM and HRTEM.The synergistic effect of PEG and SDS made the WC−Cu composite more compact during the electroplating process.The hardness of WC−Cu composites increased with the increase in WC content,while the electrical conductivity decreased with the increase in WC content.The density of samples tended to increase initially and then decreased with increase in the additive content.When the electroplating solution contained 10 g/L WC nanopowder,0.2 g/L PEG and 0.1 g/L SDS,the WC−Cu composite exhibited hardness of HV 221 and electric conductivity of 53.7 MS/m.Therefore,the results suggest that WC−Cu composite with excellent properties can be obtained by optimizing the content of additives and WC particles.展开更多
In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by...In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by which nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 (wt pct) composite powders with mean grain size of 25 nm were prepared in 32 min, and the quantity of the powders for a batch was as much as 800 grams. The as-prepared powders were analyzed and characterized by chemical analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results show that high energy ball milling with variable rotation rates and repeatious circulation could be used to produce nanocrystalline WC-Co powder composites with high efficiency. The compositions of the powders meet its specifications with low impurity content. The mean grain size decreases, lattice distortion and system energy increase with increasing the milling time. The morphology of nanocrystalline WC-Co particles displays dominantiy sphere shape and their particle sizes are all lower than 80 nm. The eutectic temperature of the nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 composites is about 1280℃.展开更多
The WC-10%Co particulate reinforced Cu matrix composite material with a WC-Co∶Cu mass ratio of 20∶80 was successfully fabricated by selective laser sintering(SLS) process. The following optimal processing parameters...The WC-10%Co particulate reinforced Cu matrix composite material with a WC-Co∶Cu mass ratio of 20∶80 was successfully fabricated by selective laser sintering(SLS) process. The following optimal processing parameters were used: laser power of 700 W, scan speed of 0.06 m/s, scan line spacing of 0.15 mm, and powder layer thickness of 0.3 mm. The microstructure, composition, and phase of the laser processed material were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and energy dispersive X-ray(EDX) spectroscopy. The results show that the bonding mechanism of this process is liquid phase sintering. The Cu and Co act as the binder phase, while the WC acts as the reinforcing phase. The non-equilibrium effects induced by laser melting, such as high degrees of undercooling and high solidification rate, result in the formation of a metastable phase CoC0.25. The WC reinforcing particulates typically have three kinds of morphology. They are agglomerated and undissolved, incompletely separated and partially dissolved, separated and dissolved, which indicates that particle rearrangement acts as the dominant sintering mechanism for the larger WC, while dissolution-precipitation prevails for the smaller WC particles. Microhardness tester was used to determine the Vickers hardness across the cross-section of the laser sintered sample, with the average value being HV0.1268.5. However, the hardness varied considerably, which might be attributed to the WC segregation and the high solidification rate experienced by the molten pool.展开更多
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c...An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.展开更多
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi...The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.展开更多
基金supported by Key Projects of Strategic International Scientific and Technological Innovation Cooperation(Grant No.2016YFE0201300)
文摘Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoV>WC coating> Zr/WC composite coating.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
基金financially supported by Ganfeng Lithium Co., Ltd.
文摘Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].
文摘The effects of additives(polyethylene glycol(PEG),sodium dodecyl sulfate(SDS))and WC nano-powder on the microstructure,relative density,hardness and electrical conductivity of electroplated WC−Cu composite were investigated.The preparation mechanism was also studied.The microstructure of samples was analyzed by XRD,SEM,EDS,TEM and HRTEM.The synergistic effect of PEG and SDS made the WC−Cu composite more compact during the electroplating process.The hardness of WC−Cu composites increased with the increase in WC content,while the electrical conductivity decreased with the increase in WC content.The density of samples tended to increase initially and then decreased with increase in the additive content.When the electroplating solution contained 10 g/L WC nanopowder,0.2 g/L PEG and 0.1 g/L SDS,the WC−Cu composite exhibited hardness of HV 221 and electric conductivity of 53.7 MS/m.Therefore,the results suggest that WC−Cu composite with excellent properties can be obtained by optimizing the content of additives and WC particles.
文摘In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by which nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 (wt pct) composite powders with mean grain size of 25 nm were prepared in 32 min, and the quantity of the powders for a batch was as much as 800 grams. The as-prepared powders were analyzed and characterized by chemical analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results show that high energy ball milling with variable rotation rates and repeatious circulation could be used to produce nanocrystalline WC-Co powder composites with high efficiency. The compositions of the powders meet its specifications with low impurity content. The mean grain size decreases, lattice distortion and system energy increase with increasing the milling time. The morphology of nanocrystalline WC-Co particles displays dominantiy sphere shape and their particle sizes are all lower than 80 nm. The eutectic temperature of the nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 composites is about 1280℃.
基金Project(10276017) supported by the Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics Project(04H52061) supported by the Aeronautical Science Foundation of China Project(S0403-061) supported by the Scientific Research Innovations Foundation of Nanjing University of Aeronautics and Astronautics
文摘The WC-10%Co particulate reinforced Cu matrix composite material with a WC-Co∶Cu mass ratio of 20∶80 was successfully fabricated by selective laser sintering(SLS) process. The following optimal processing parameters were used: laser power of 700 W, scan speed of 0.06 m/s, scan line spacing of 0.15 mm, and powder layer thickness of 0.3 mm. The microstructure, composition, and phase of the laser processed material were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and energy dispersive X-ray(EDX) spectroscopy. The results show that the bonding mechanism of this process is liquid phase sintering. The Cu and Co act as the binder phase, while the WC acts as the reinforcing phase. The non-equilibrium effects induced by laser melting, such as high degrees of undercooling and high solidification rate, result in the formation of a metastable phase CoC0.25. The WC reinforcing particulates typically have three kinds of morphology. They are agglomerated and undissolved, incompletely separated and partially dissolved, separated and dissolved, which indicates that particle rearrangement acts as the dominant sintering mechanism for the larger WC, while dissolution-precipitation prevails for the smaller WC particles. Microhardness tester was used to determine the Vickers hardness across the cross-section of the laser sintered sample, with the average value being HV0.1268.5. However, the hardness varied considerably, which might be attributed to the WC segregation and the high solidification rate experienced by the molten pool.
文摘An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.
基金financially supported by the National Natural Science Foundation of China (No.51872023)
文摘The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.