The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resi...The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.展开更多
The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron m...The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.展开更多
Ni Cr based alloys with a wide temperature range self lubrication were made by hot pressing the mixture powder of alloyed Ni Cr powder, elemental Mo, Al, Ti and B powders and MoS 2 powder. The mechanical and tribologi...Ni Cr based alloys with a wide temperature range self lubrication were made by hot pressing the mixture powder of alloyed Ni Cr powder, elemental Mo, Al, Ti and B powders and MoS 2 powder. The mechanical and tribological properties of these alloys when rubbing with Al 2O 3 ceramics and W18Cr4V high speed steel were measured in the temperature range of 20~700 ℃, and the mechanisms of self lubrication and wear resistance were studied. The results showed that the alloy containing 10% MoS 2 has the best combination of mechanical properties, antifriction and wear resistance. Over a wide temperature range from 20 ℃ to 700 ℃, when rubbing with Al 2O 3, its friction coefficient and wear rate are 0.19~0.3 and (1.1~1.5)10 -14 m 3/(N·m), respectively; when rubbing with the high speed steel, those values are 0.18 ~ 0.26 and (0.6~3.2)×10 -15 m 3/(N·m), respectively.展开更多
The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase stru...The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating.展开更多
The NiSix based alloy typically has poor weldability due to its lower ductility. A limited amount of work has been performed on the weldability of NiSix based alloys. Therefore, the effect of heat treatment and weldin...The NiSix based alloy typically has poor weldability due to its lower ductility. A limited amount of work has been performed on the weldability of NiSix based alloys. Therefore, the effect of heat treatment and welding parameters on weldability of the alloys, and the relationship between the weldability and microstructure were studied. The results show that the as-cast Ni-Si-Nb-B alloy (Ni 76. 5%, Si 20%, Nb 3%, and B 0. 5%) could be successfully welded after preheating at 600 ℃. The welding procedure should be performed on the alloys before any heat treatment and a preheating at 600 ℃ should be used. The fusion zone is harder than the matrix due to a large amount of 7 phase and a finer microstructure. The cracks are predominantly intergranular in heat affected zone and associated with the needle-like ), phase. The heat treatment before welding increases the tendency of cracking in the fusion zone.展开更多
The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLT...The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.展开更多
The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The mic...The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.展开更多
Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence beha...Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence behavior and cooling rate have been reported.A significant inhomo-geneity of reduction in grain size of a bulk sample is observed,which is caused by the different so-lidification conditions:(1)recalescence process,and(2)the followed plateau in which the heatrelease and extraction rates are equal.It is concluded that the homogeneous refined microstructurecan be achieved if the initial undercooling prior to nucleation,or cooling rate after recalescence isfurther increased.展开更多
The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission el...The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal cycling test under various stresses. The transformation temperatures shifted toward lower temperatures when adding a third element into the Ni-Mn system. The addition of 10 at. pct Fe increased considerably the mechanical properties exhibiting still high transformation temperatures. However, it was found that in NiMn40Fe10 alloy the martensitic transformation is not thermoelastic in nature. The mechanism of this transformation and the crystallography of Ni-Mn(50-x)-Fex (x=5, 7, 10, 20 at. pct) alloys are presented.展开更多
Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties wer...Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties were evaluated, The results show that the strengthening phases can improve the mechanical properties of Ni-Cr based alloy obviously, and the wear and friction properties of Ni-based alloy with strengthening phase can be improved. Its friction coefficient and wear rate rubbed with Al2O3 ceramic disk are about 0.4 and 10 -14m3/(N·m), respectively, and the oxidation process is mainly affected by Cr2O3.展开更多
Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stre...Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stress within the surfacing welding layer. The results show that cracking in the surfacing welding layer is directly related to the producing of eutectic phase β' (NiAl) in the interdendritic region and high thermal stress within the surfacing welding layer. When the process of electric arc surfacing welding is changed from along straight line to along' Z' pattern, cracking in the surfacing welding layer of Ni3Al based alloy is prevented due to being reduced of both the cooling rate of liquid in the molten pool and the moving speed of the heat source. Reducing the melting volume of the substrate material by lowering the output power of electric arc welding would make the content of iron atoms in the molten pool decrease. and this also can reduce the trend of the eutectic reaction in the interdendfitic region and is helpful to Suppress cracking in the surfacing welding layer.展开更多
A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, che...A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.展开更多
It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α...It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.展开更多
By means of the microstructure observation and creep properties measurement, an investigation has been made into the influence of the salt quenching temperatures on the microstructure and creep property of FGH95 super...By means of the microstructure observation and creep properties measurement, an investigation has been made into the influence of the salt quenching temperatures on the microstructure and creep property of FGH95 superalloy. The results shown that, after full heat treatment, a high volume of g¢ phase and some granular carbide dispersedly precipitate in the matrix. Thereinto, as the molten salt temperature decreases from 650℃to520℃, the size of fine g¢ phase in the alloy decrease gradually and the amount of carbides increase in the alloy. And the alloy quenched in molten salt at520℃possesses better creep resistance due to the fact that there are more granular carbides precipitating in the alloy to enhance the grain strength. During creep, the deformation features of the alloy are that the configurations of stacking fault and slipping dislocations are activated in the alloy.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
基金Project (2009AA032601) supported by the National High-tech Research and Development Program of China
文摘The hot corrosion behaviors of Ni–16Cr–xAl(x=4.5%, 6.8%, 9.0%, mass fraction) based alloys in Na2SO4–25% NaCl molten salts at 600 °C were investigated. The effects of pre-oxidation and Al content on the resistance to hot corrosion were examined. The hot corrosion resistance of Ni–16Cr–xAl based alloy with Al addition from 4.5% to 9.0% increases with increasing Al content. The alloy with Al content of 9.0% shows the highest hot corrosion resistance among the examined alloys because more β–NiAl phases are obtained to sustain the Al2O3 scale repaired during hot corrosion. Pre-oxidized specimens have a superior hot corrosion resistance compared with the as-cast specimens, due to a protective oxide scale formed after pre-treatment.
基金Project(50971012) supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behaviors of three kinds of Ni3Al-Mo based alloys at 1150 ℃ were studied.The morphology,structure and element distribution of oxide scales of the alloys were researched by scanning electron microscopy,X-ray diffraction and electron probe microanalysis.The research results show that there are three oxide layers,an outer layer of NiO,an intermediate layer mainly composed of NiO,NiAl2O4 and a small amount of NiMoO4,and an inner layer of NiAl2O4 and Al2O3.Re element was mainly distributed in the intermediate layer,which plays a role as "diffusion barrier" in the process of oxidation,and effectively reduces the diffusion rate of Al and Mo elements outward and diffusion rate of O element inward.As a result,a Al-rich oxide layer formed in the inner layer inhibits the growth of oxide layer and improves the oxidation resistance of the alloy.
文摘Ni Cr based alloys with a wide temperature range self lubrication were made by hot pressing the mixture powder of alloyed Ni Cr powder, elemental Mo, Al, Ti and B powders and MoS 2 powder. The mechanical and tribological properties of these alloys when rubbing with Al 2O 3 ceramics and W18Cr4V high speed steel were measured in the temperature range of 20~700 ℃, and the mechanisms of self lubrication and wear resistance were studied. The results showed that the alloy containing 10% MoS 2 has the best combination of mechanical properties, antifriction and wear resistance. Over a wide temperature range from 20 ℃ to 700 ℃, when rubbing with Al 2O 3, its friction coefficient and wear rate are 0.19~0.3 and (1.1~1.5)10 -14 m 3/(N·m), respectively; when rubbing with the high speed steel, those values are 0.18 ~ 0.26 and (0.6~3.2)×10 -15 m 3/(N·m), respectively.
文摘The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating.
基金Item Sponsored by State Key Lab of Mechanical Transmissions,Chongqing University
文摘The NiSix based alloy typically has poor weldability due to its lower ductility. A limited amount of work has been performed on the weldability of NiSix based alloys. Therefore, the effect of heat treatment and welding parameters on weldability of the alloys, and the relationship between the weldability and microstructure were studied. The results show that the as-cast Ni-Si-Nb-B alloy (Ni 76. 5%, Si 20%, Nb 3%, and B 0. 5%) could be successfully welded after preheating at 600 ℃. The welding procedure should be performed on the alloys before any heat treatment and a preheating at 600 ℃ should be used. The fusion zone is harder than the matrix due to a large amount of 7 phase and a finer microstructure. The cracks are predominantly intergranular in heat affected zone and associated with the needle-like ), phase. The heat treatment before welding increases the tendency of cracking in the fusion zone.
基金This work was financially supported by the S&T Research Development Project of the Ministry of Science and Technology, China (No.05021050).
文摘The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.
基金Funded by the National Natural Science Foundation of China (No.50675136 and No.50375096)
文摘The in situ synthesized NbC particles reinforced Ni-based alloy composite coating was produced by laser cladding a precursor mixture of Ni-based alloy powder, graphite and niobium powders on a steel substrate. The microstructure, phase composition and wear property of the composite coating were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the composite coating is homogeneous and free from cracks, and about 0.8 mm thick. The microstructure of the composite coating is mainly composed of NbC particles, CrB type chromium borides, 7-Ni primary dendrites, and interdendritic eutectics. CrB phases often nucleate and grow on the surface of NbC particles or in their close vicinity. NbC particles are formed via in situ reaction between niobium and graphite in the molten pool during the laser cladding process and they are commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower-like shape. Compared with the pure Ni- based alloy coating, the microhardness of the composite coating is increased about 38%, giving a high average hardness of HV0.21000, and the wear rate of the composite coating is decreased by about 32%, respectively. These are attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.
基金Financilly suported by the National Natural Science Foundation of China
文摘Fluxing of 5 g bulk melt Ni77Si13B10 permits high undercoolings to be attained prior to nu-cleation onset.Investigations of grain refinement in the bulk undercooled alloy as a function ofundercooling,recalescence behavior and cooling rate have been reported.A significant inhomo-geneity of reduction in grain size of a bulk sample is observed,which is caused by the different so-lidification conditions:(1)recalescence process,and(2)the followed plateau in which the heatrelease and extraction rates are equal.It is concluded that the homogeneous refined microstructurecan be achieved if the initial undercooling prior to nucleation,or cooling rate after recalescence isfurther increased.
基金express their gratitude to the Ministry of Education,Culture and Sports of Japan(MEXT) for partially supporting this research
文摘The microstructural features, shape memory behavior and mechanical properties of Ni-Mn based alloys were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal cycling test under various stresses. The transformation temperatures shifted toward lower temperatures when adding a third element into the Ni-Mn system. The addition of 10 at. pct Fe increased considerably the mechanical properties exhibiting still high transformation temperatures. However, it was found that in NiMn40Fe10 alloy the martensitic transformation is not thermoelastic in nature. The mechanism of this transformation and the crystallography of Ni-Mn(50-x)-Fex (x=5, 7, 10, 20 at. pct) alloys are presented.
文摘Ni-Cr based alloys were prepared by hot-pressing the mixture of strengthening phases Mo, Al, Ti, and lubricant phase MoS2. The hardness, tribological properties as well as the high temperature oxidation properties were evaluated, The results show that the strengthening phases can improve the mechanical properties of Ni-Cr based alloy obviously, and the wear and friction properties of Ni-based alloy with strengthening phase can be improved. Its friction coefficient and wear rate rubbed with Al2O3 ceramic disk are about 0.4 and 10 -14m3/(N·m), respectively, and the oxidation process is mainly affected by Cr2O3.
文摘Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stress within the surfacing welding layer. The results show that cracking in the surfacing welding layer is directly related to the producing of eutectic phase β' (NiAl) in the interdendritic region and high thermal stress within the surfacing welding layer. When the process of electric arc surfacing welding is changed from along straight line to along' Z' pattern, cracking in the surfacing welding layer of Ni3Al based alloy is prevented due to being reduced of both the cooling rate of liquid in the molten pool and the moving speed of the heat source. Reducing the melting volume of the substrate material by lowering the output power of electric arc welding would make the content of iron atoms in the molten pool decrease. and this also can reduce the trend of the eutectic reaction in the interdendfitic region and is helpful to Suppress cracking in the surfacing welding layer.
基金The paper is supported by country-level Spark Plan in 2003,project No.: 2003EA690034.
文摘A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.
文摘It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.
文摘By means of the microstructure observation and creep properties measurement, an investigation has been made into the influence of the salt quenching temperatures on the microstructure and creep property of FGH95 superalloy. The results shown that, after full heat treatment, a high volume of g¢ phase and some granular carbide dispersedly precipitate in the matrix. Thereinto, as the molten salt temperature decreases from 650℃to520℃, the size of fine g¢ phase in the alloy decrease gradually and the amount of carbides increase in the alloy. And the alloy quenched in molten salt at520℃possesses better creep resistance due to the fact that there are more granular carbides precipitating in the alloy to enhance the grain strength. During creep, the deformation features of the alloy are that the configurations of stacking fault and slipping dislocations are activated in the alloy.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.