Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ...Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.展开更多
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p...As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.展开更多
This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combin...This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.展开更多
COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.D...COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management.展开更多
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava...In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.展开更多
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th...Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.展开更多
Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the...Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.展开更多
That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through...That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through the jaguars-loom mainframe computer to the present modern high power processing computers with sextillion bytes storage capacity has prompted discussion of Big Data concept as a tool in managing hitherto all human challenges of complex human system multiplier effects. The supply chain management (SCM) that deals with spatial service delivery that must be safe, efficient, reliable, cheap, transparent, and foreseeable to meet customers’ needs cannot but employ bid data tools in its operation. This study employs secondary data online to review the importance of big data in supply chain management and the levels of adoption in Nigeria. The study revealed that the application of big data tools in SCM and other industrial sectors is synonymous to human and national development. It is therefore recommended that both private and governmental bodies should key into e-transactions for easy data assemblage and analysis for profitable forecasting and policy formation.展开更多
This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and i...This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.展开更多
With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterp...With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterprises,which is crucial to the competitiveness of enterprises.Enterprises need to attract,retain,and motivate excellent employees,thereby enhancing the innovation ability of enterprises and improving competitiveness and market share in the market.To maintain advantages in the fierce market competition,enterprises need to adopt more scientific and effective human resource management methods to enhance organizational efficiency and competitiveness.At the same time,this paper analyzes the dilemma faced by enterprise human resource management,points out the new characteristics of enterprise human resource management enabled by big data,and puts forward feasible suggestions for enterprise digital transformation.展开更多
As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is r...As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is revolutionizing all industries,bringing colossal impacts to them[2].Many researchers have pointed out the huge impact that big data can have on our daily lives[3].We can utilize the information we obtain and help us make decisions.Also,the conclusions we drew from the big data we analyzed can be used as a prediction for the future,helping us to make more accurate and benign decisions earlier than others.If we apply these technics in finance,for example,in stock,we can get detailed information for stocks.Moreover,we can use the analyzed data to predict certain stocks.This can help people decide whether to buy a stock or not by providing predicted data for people at a certain convincing level,helping to protect them from potential losses.展开更多
With the rapid development and widespread application of Big Data technology, the supply chain management of agricultural products enterprises is facing unprecedented reform and challenges. This study takes the perspe...With the rapid development and widespread application of Big Data technology, the supply chain management of agricultural products enterprises is facing unprecedented reform and challenges. This study takes the perspective of Big Data technology and collects relevant information on the application of supply chain management in 100 agricultural product enterprises through a survey questionnaire. The study found that the use of Big Data can effectively improve the accuracy of demand forecasting, inventory management efficiency, optimize logistics costs, improve supplier management efficiency, enhance the overall level of supply chain management of enterprises, and propose innovative strategies for supply chain management of agricultural products enterprises based on this. Big Data technology brings a new solution for agricultural products enterprises to enhance their supply chain management level, making the supply chain smarter and more efficient.展开更多
Driven by the wave of big data,the traditional financial accounting model faces an urgent need for transformation,as it struggles to adapt to the complex requirements of modern enterprise management.This paper aims to...Driven by the wave of big data,the traditional financial accounting model faces an urgent need for transformation,as it struggles to adapt to the complex requirements of modern enterprise management.This paper aims to explore the feasible path for transitioning enterprise financial accounting to management accounting in the context of big data.It first analyzes the limitations of financial accounting in the era of big data,then highlights the necessity of transitioning to management accounting.Following this,the paper outlines the various challenges that may arise during this transition and,based on the analysis,proposes a series of corresponding transition strategies.These strategies aim to provide theoretical support and practical guidance for enterprises seeking a smooth transition from financial accounting to management accounting.展开更多
With the rapid development of big data,big data has been more and more applied in all walks of life.Under the big data environment,massive big data provides convenience for regional tax risk control and strategic deci...With the rapid development of big data,big data has been more and more applied in all walks of life.Under the big data environment,massive big data provides convenience for regional tax risk control and strategic decision-making but also increases the difficulty of data supervision and management.By analyzing the status quo of big data and tax risk management,this paper finds many problems and puts forward effective countermeasures for tax risk supervision and strategic management by using big data.展开更多
As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by ...As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.展开更多
In the 21st century,with the development of the Internet,mobile devices,and information technology,society has entered a new era:the era of big data.With the help of big data technology,enterprises can obtain massive ...In the 21st century,with the development of the Internet,mobile devices,and information technology,society has entered a new era:the era of big data.With the help of big data technology,enterprises can obtain massive market and consumer data,realize in-depth analysis of business and market,and enable enterprises to have a deeper understanding of consumer needs,preferences,and behaviors.At the same time,big data technology can also help enterprises carry out human resource management innovation and improve the performance and competitiveness of enterprises.Of course,from another perspective,enterprises in this era are also facing severe challenges.In the face of massive data processing and analysis,it requires superb data processing and analysis capabilities.Secondly,enterprises need to reconstruct their management system to adapt to the changes in the era of big data.Enterprises must treat data as assets and establish a perfect data management system.In addition,enterprises also need to pay attention to protecting customer privacy and data security to avoid data leakage and abuse.In this context,this paper will explore the thinking of enterprise human resource management innovation in the era of big data,and put forward some suggestions on enterprise human resource management innovation.展开更多
This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media...This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.展开更多
The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing ...The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.展开更多
Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based...Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based on data mining.Furthermore,with the complexity of industrial equipment increasing,the managers should pay more attention to the key components and carry out the lean management is very important.Therefore,the idea"customer segmentation"of"precise marketing"can be used in the maintenance management of the multi-component system.Following the idea of segmentation,the components of multicomponent systems should be subdivied into groups based on specific attributes relevant to maintenance,such as maintenance cost,mean time between failures,and failure frequency.For the target specific groups of parts,the optimal maintenance policy,health assessment and maintenance scheduling can be determined.The proposed analysis framework will be given out.In order to illustrate the effectiveness of this method,a numerical example is given out.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
基金supported by the Ministerio Espanol de Ciencia e Innovación under Project Number PID2020-115570GB-C22,MCIN/AEI/10.13039/501100011033by the Cátedra de Empresa Tecnología para las Personas(UGR-Fujitsu).
文摘As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.
文摘This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.
基金This research was supported by the UBC APFNet Grant(Project ID:2022sp2 CAN).
文摘COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management.
基金partially supported by the Foundation of State Key Laboratory of Public Big Data(No.PBD2022-01).
文摘In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.
基金The Deanship of Scientific Research at Hashemite University partially funds this workDeanship of Scientific Research at the Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2024-1580-08”.
文摘Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.
文摘Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.
文摘That the world is a global village is no longer news through the tremendous advancement in the Information Communication Technology (ICT). The metamorphosis of the human data storage and analysis from analogue through the jaguars-loom mainframe computer to the present modern high power processing computers with sextillion bytes storage capacity has prompted discussion of Big Data concept as a tool in managing hitherto all human challenges of complex human system multiplier effects. The supply chain management (SCM) that deals with spatial service delivery that must be safe, efficient, reliable, cheap, transparent, and foreseeable to meet customers’ needs cannot but employ bid data tools in its operation. This study employs secondary data online to review the importance of big data in supply chain management and the levels of adoption in Nigeria. The study revealed that the application of big data tools in SCM and other industrial sectors is synonymous to human and national development. It is therefore recommended that both private and governmental bodies should key into e-transactions for easy data assemblage and analysis for profitable forecasting and policy formation.
文摘This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.
文摘With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterprises,which is crucial to the competitiveness of enterprises.Enterprises need to attract,retain,and motivate excellent employees,thereby enhancing the innovation ability of enterprises and improving competitiveness and market share in the market.To maintain advantages in the fierce market competition,enterprises need to adopt more scientific and effective human resource management methods to enhance organizational efficiency and competitiveness.At the same time,this paper analyzes the dilemma faced by enterprise human resource management,points out the new characteristics of enterprise human resource management enabled by big data,and puts forward feasible suggestions for enterprise digital transformation.
文摘As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is revolutionizing all industries,bringing colossal impacts to them[2].Many researchers have pointed out the huge impact that big data can have on our daily lives[3].We can utilize the information we obtain and help us make decisions.Also,the conclusions we drew from the big data we analyzed can be used as a prediction for the future,helping us to make more accurate and benign decisions earlier than others.If we apply these technics in finance,for example,in stock,we can get detailed information for stocks.Moreover,we can use the analyzed data to predict certain stocks.This can help people decide whether to buy a stock or not by providing predicted data for people at a certain convincing level,helping to protect them from potential losses.
文摘With the rapid development and widespread application of Big Data technology, the supply chain management of agricultural products enterprises is facing unprecedented reform and challenges. This study takes the perspective of Big Data technology and collects relevant information on the application of supply chain management in 100 agricultural product enterprises through a survey questionnaire. The study found that the use of Big Data can effectively improve the accuracy of demand forecasting, inventory management efficiency, optimize logistics costs, improve supplier management efficiency, enhance the overall level of supply chain management of enterprises, and propose innovative strategies for supply chain management of agricultural products enterprises based on this. Big Data technology brings a new solution for agricultural products enterprises to enhance their supply chain management level, making the supply chain smarter and more efficient.
文摘Driven by the wave of big data,the traditional financial accounting model faces an urgent need for transformation,as it struggles to adapt to the complex requirements of modern enterprise management.This paper aims to explore the feasible path for transitioning enterprise financial accounting to management accounting in the context of big data.It first analyzes the limitations of financial accounting in the era of big data,then highlights the necessity of transitioning to management accounting.Following this,the paper outlines the various challenges that may arise during this transition and,based on the analysis,proposes a series of corresponding transition strategies.These strategies aim to provide theoretical support and practical guidance for enterprises seeking a smooth transition from financial accounting to management accounting.
文摘With the rapid development of big data,big data has been more and more applied in all walks of life.Under the big data environment,massive big data provides convenience for regional tax risk control and strategic decision-making but also increases the difficulty of data supervision and management.By analyzing the status quo of big data and tax risk management,this paper finds many problems and puts forward effective countermeasures for tax risk supervision and strategic management by using big data.
文摘As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.
文摘In the 21st century,with the development of the Internet,mobile devices,and information technology,society has entered a new era:the era of big data.With the help of big data technology,enterprises can obtain massive market and consumer data,realize in-depth analysis of business and market,and enable enterprises to have a deeper understanding of consumer needs,preferences,and behaviors.At the same time,big data technology can also help enterprises carry out human resource management innovation and improve the performance and competitiveness of enterprises.Of course,from another perspective,enterprises in this era are also facing severe challenges.In the face of massive data processing and analysis,it requires superb data processing and analysis capabilities.Secondly,enterprises need to reconstruct their management system to adapt to the changes in the era of big data.Enterprises must treat data as assets and establish a perfect data management system.In addition,enterprises also need to pay attention to protecting customer privacy and data security to avoid data leakage and abuse.In this context,this paper will explore the thinking of enterprise human resource management innovation in the era of big data,and put forward some suggestions on enterprise human resource management innovation.
文摘This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.
文摘The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.
基金National Natural Science Foundations of China(No.71501103)Natural Science Foundation of Inner Mongolia,China(No.2015BS0705)the Program of Higher-Level Talents of Inner Mongolia University,China(No.20700-5145131)
文摘Complex repairable system is composed of thousands of components.Some maintenance management and decision problems in maintenance management and decision need to classify a set of components into several classes based on data mining.Furthermore,with the complexity of industrial equipment increasing,the managers should pay more attention to the key components and carry out the lean management is very important.Therefore,the idea"customer segmentation"of"precise marketing"can be used in the maintenance management of the multi-component system.Following the idea of segmentation,the components of multicomponent systems should be subdivied into groups based on specific attributes relevant to maintenance,such as maintenance cost,mean time between failures,and failure frequency.For the target specific groups of parts,the optimal maintenance policy,health assessment and maintenance scheduling can be determined.The proposed analysis framework will be given out.In order to illustrate the effectiveness of this method,a numerical example is given out.