期刊文献+
共找到65,524篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
1
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Design of Fully Automatic Specification Selection System for Resistance Welding Equipment
2
作者 Xiangkun Lu Zengtai Tian +1 位作者 Hao Xu Yue Guo 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期64-68,共5页
A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding ... A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality. 展开更多
关键词 seat spot welding welding specifications fully automatic
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
3
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Theoretical analysis of the elastic Kelvin-Helmholtz instability in explosive weldings
4
作者 Yuanbo Sun Jianning Gou +5 位作者 Cheng Wang Qiang Zhou Rui Liu Pengwan Chen Tonghui Yang Xiang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期521-528,共8页
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el... By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations. 展开更多
关键词 Explosive welding Hydrodynamic instabilities ELASTICITY
下载PDF
A critical review on solid-state welding of high entropy alloys-processing,microstructural characteristics and mechanical properties of joints
5
作者 Tushar Sonar Mikhail Ivanov +2 位作者 Evgeny Trofimov Aleksandr Tingaev Ilsiya Suleymanova 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期78-133,共56页
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan... The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints. 展开更多
关键词 High entropy alloys Solid state welding MICROSTRUCTURE Mechanical properties
下载PDF
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
6
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection
7
作者 Pengchao Li Fang Xu +3 位作者 Jintao Wang Haibing Guo Mingmin Liu Zhenjun Du 《Computers, Materials & Continua》 SCIE EI 2024年第2期1755-1771,共17页
We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance... We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations.Initially,to enhance the capability of deep neural networks in extracting geometric attributes from depth images,we developed a novel deep geometric convolution operator(DGConv).DGConv is utilized to construct a deep local geometric feature extraction module,facilitating a more comprehensive exploration of the intrinsic geometric information within depth images.Secondly,we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network(FCN8)to establish a high-performance deep neural network algorithm tailored for depth image segmentation.Concurrently,we enhance the FCN8 detection head by separating the segmentation and classification processes.This enhancement significantly boosts the network’s overall detection capability.Thirdly,for a comprehensive assessment of our proposed algorithm and its applicability in real-world industrial settings,we curated a line-scan image dataset featuring weld seams.This dataset,named the Standardized Linear Depth Profile(SLDP)dataset,was collected from actual industrial sites where autonomous robots are in operation.Ultimately,we conducted experiments utilizing the SLDP dataset,achieving an average accuracy of 92.7%.Our proposed approach exhibited a remarkable performance improvement over the prior method on the identical dataset.Moreover,we have successfully deployed the proposed algorithm in genuine industrial environments,fulfilling the prerequisites of unmanned robot operations. 展开更多
关键词 weld image detection deep learning semantic segmentation depth map geometric feature extraction
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
8
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
下载PDF
Comparison study on measurement of rail weld joint between inertial reference method and multi-point chord reference method
9
作者 Yifan Shi Yuan Wang +1 位作者 Xiaozhou Liu Ping Wang 《Railway Sciences》 2024年第1期69-83,共15页
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ... Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method. 展开更多
关键词 Rail weld joint Inertial reference method Short-wavelength irregularities Multi-point chord reference method 5-m wavelength range
下载PDF
新时代背景下焊接专业全英文课程建设与改革实践——以《Solid State Welding》为例
10
作者 杨夏炜 苏宇 +2 位作者 马铁军 徐雅欣 李文亚 《焊接技术》 2024年第4期145-148,共4页
在全球国际化和国家战略“双一流”建设的背景下,积极构建焊接技术与工程专业或焊接方向的国际化人才培养体系与模式,大力推进全英文课程的建设与改革,加快培养焊接领域国际化综合人才具有十分重要的意义。课程建设与改革是新工科建设... 在全球国际化和国家战略“双一流”建设的背景下,积极构建焊接技术与工程专业或焊接方向的国际化人才培养体系与模式,大力推进全英文课程的建设与改革,加快培养焊接领域国际化综合人才具有十分重要的意义。课程建设与改革是新工科建设的实施途径,文中以《Solid State Welding》全英文课程实践为例,不断完善新工科焊接方向课程体系建设,构建与国际接轨的教学内容与方法,将国际化视野、国际化教学思维及方法融入到全英文教育教学中,使学生在掌握国际课程知识的基础上,开拓国际视野,有效培养国际交流与合作能力。 展开更多
关键词 焊接 Solid State welding 全英文课程 国际化视野 课程建设
下载PDF
Metallurgical Microstructure Complexity in the Electron Beam Welding (EBW) Joint of Ti6246
11
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Roei Saraga Tal Rokah Denis Panchenco Michael Mansano Elinor Itzhaky Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期100-111,共12页
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i... Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone. 展开更多
关键词 Ti Alloys weldING Phase Formation HARDNESS METALLOGRAPHY
下载PDF
Review on friction stir welding of dissimilar magnesium and aluminum alloys: Scientometric analysis and strategies for achieving high-quality joints
12
作者 Mohamed M.Z.Ahmed Mohamed M.El-Sayed Seleman +1 位作者 Dariusz Fydrych Gürel ÇAM 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4082-4127,共46页
Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders p... Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs. 展开更多
关键词 Friction stir welding(FSW) AL-ALLOYS Mg-alloys Dissimilar material welding INTERMETALLICS weld performance
下载PDF
Residual Stress and Fracture Toughness Study in A516 Gr70 Steel Joints Welded and Repaired by Arc Processes
13
作者 Régis de Matos Curvelo de Barros Mauricio David Martins das Neves 《Engineering(科研)》 2023年第11期749-758,共10页
Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminat... Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO<sub>2</sub>) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve. 展开更多
关键词 weld Repair weld Fatigue weld J Integral Residual Stress Microharness
下载PDF
The role of physical properties in explosive welding of copper to stainless steel 被引量:1
14
作者 G.H.S.F.L.Carvalho I.Galvao +3 位作者 R.Mendes R.M.Leal A.B.Moreira A.Loureiro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期88-98,共11页
This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel ... This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel and copper.Sound welds between stainless steel and copper were obtained,and the interfacial morphology was wavy,regardless of the position of the materials.The weldability of dissimilar pairs was found to be more dependent on the relationship between the physical properties of the base materials than on the absolute value of the material property.When there is a significant difference in thermal conductivity between the flyer and the base plate,together with a material with a low melting temperature,the weldability of the pair is often poor.The relative position of the plates affects the interfacial microstructure even when similar morphologies are found.For the metallic pairs studied,the wave size was bigger for the configuration in which the ratio between the density of the flyer and the density of the base plate is smaller.The same phenomenon was observed for the impedance:bigger waves were found for a smaller ratio between the impedance of the flyer and the impedance of the base plate. 展开更多
关键词 Explosive welding SOLID-STATE Copper-stainless steel Dissimilar Interface morphology weldABILITY
下载PDF
基于Simufact Welding的等高齿弧锥齿轮铣刀盘焊接数值模拟
15
作者 王志刚 李胜 《工具技术》 北大核心 2023年第4期113-117,共5页
利用Simufact Welding焊接仿真软件对等高齿弧锥齿轮铣刀盘的焊接进行模拟仿真。通过改变焊接坡口间隙进行变量控制,使用激光填丝多层单道焊接方法在其他焊接参数相同条件下进行焊接,得到坡口间隙为2mm时焊接变形量与残余应力最小的结论。
关键词 Simufact welding 铣刀盘 坡口间隙 焊接 变形
下载PDF
基于Simufact Welding的激光熔覆仿真研究
16
作者 敖良忠 贾文彬 +1 位作者 魏永超 丁坚 《山西冶金》 CAS 2023年第12期102-105,232,共5页
激光熔覆是利用高能量光束将合金粉末通过预设轨迹将受损零件修复成完整状态的一项新兴技术,粉末在经高能激光照射后变为熔融状态,熔覆层与基体结合,基体的材料性能便得以提升。基于钛合金强度高的特点,以Ti-6Ai-V粉末为研究对象,利用Si... 激光熔覆是利用高能量光束将合金粉末通过预设轨迹将受损零件修复成完整状态的一项新兴技术,粉末在经高能激光照射后变为熔融状态,熔覆层与基体结合,基体的材料性能便得以提升。基于钛合金强度高的特点,以Ti-6Ai-V粉末为研究对象,利用Simufact Welding对Ti-6AI-4V粉末进行激光熔覆仿真,并通过单道激光熔覆仿真研究激光熔覆过程中激光功率、扫描速度、初始温度对熔覆的影响规律,同时比较激光功率、扫描速度、初始温度对熔池温度变化速率的影响。 展开更多
关键词 激光熔覆 仿真分析 Simufact welding
下载PDF
Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding
17
作者 Zhiwei Wang Min Zhang +6 位作者 Cong Li Fenglei Niu Hao Zhang Peng Xue Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期166-176,共11页
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q... The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels. 展开更多
关键词 heat-resistant steel stainless steel friction stir welding dissimilar welding MICROSTRUCTURE mechanical property
下载PDF
Galvanic corrosion of AZ31B joined to dual-phase steel with and without Zn layer by ultrasonic and friction stir welding
18
作者 Jiheon Jun Vineet V.Joshi +6 位作者 Alasdair Crawford Vilayanur Viswanathan Donovan N.Leonard Jian Chen Piyush Updadhyay Yong Chae Lim Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期462-479,共18页
Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. C... Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion. 展开更多
关键词 Mg alloy Zn coating Ultrasonic spot welding Friction stir welding Galvanic corrosion
下载PDF
Effect of Conventional and Pulsed TIG Welding on Microstructural and Mechanical Characteristics of AA 6082-T6 Repair Welds
19
作者 NAING Thet Htet MUANGJUNBUREE Prapas 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期865-876,共12页
Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repa... Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties. 展开更多
关键词 repair welds pulsed TIG welding aluminum alloy 6082-T6 ER 4043 filler
下载PDF
Research on friction stir welding of 5754 aluminum alloy with unequal thickness
20
作者 韩荣豪 任大鑫 +1 位作者 宋刚 刘黎明 《China Welding》 CAS 2023年第3期1-9,共9页
A new structure of 1+2 was designed in friction stir welding(FSW)of Al alloy sheet with unequal thickness:a specific sheet with similar composition of base metals(BMs)was placed under the thinner sheet as the supporti... A new structure of 1+2 was designed in friction stir welding(FSW)of Al alloy sheet with unequal thickness:a specific sheet with similar composition of base metals(BMs)was placed under the thinner sheet as the supporting sheet so that the BM surfaces could be on a plane.The BMs can also be fully penetrated weld with a stirring pin longer than the thickness of the thin sheet.2 mm and 1.5 mm thick Al alloy sheets were welded by FSW,and parameters were optimized.The highest welding strength reached 96.07%of the thin base metal.Although a slight thinning phenomenon occurred at the edge of the nugget on the retreating side,the specimen still fractured in the heat-af-fected zone. 展开更多
关键词 friction stir welding unequal thickness welding tensile strength MICROSTRUCTURE supporting sheet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部