期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于CBAM VGG16-UNet语义分割模型的建筑物提取研究
1
作者 赵兴旺 吴治国 +2 位作者 刘超 刘春阳 陈健 《齐齐哈尔大学学报(自然科学版)》 2024年第3期34-40,共7页
针对在遥感影像建筑物提取中常常出现“漏检”“错检”“空洞”等问题,提出了融合双注意力机制的CBAM VGG16-UNet网络,用于建筑物提取研究。基于U-Net网络架构,在下采样部分,用VGG16前5个卷积块代替U-Net网络的编码器部分,在上采样的每... 针对在遥感影像建筑物提取中常常出现“漏检”“错检”“空洞”等问题,提出了融合双注意力机制的CBAM VGG16-UNet网络,用于建筑物提取研究。基于U-Net网络架构,在下采样部分,用VGG16前5个卷积块代替U-Net网络的编码器部分,在上采样的每个特征融合时引入双注意力机制CBAM,并用双线性插值代替U-Net的转置卷积。使用WHU建筑物数据集以及贵阳建筑物数据集进行了模型验证,与Mobile-UNet、U-Net、VGG16-UNet 3种建筑物提取网络模型进行对比分析。实验表明,CBAM VGG16-UNet在WHU建筑物数据集上精准率、召回率、F1-score、IoU达到了94.90%,95.46%,95.18%,90.80%,在贵阳建筑物数据集上精准率、召回率、F1-score、IoU达到了77.53%,84.46%,80.85%,67.85%,均优于3种对比模型。为解决建筑物提取常见问题提供了新思路,具有一定的工程应用价值。 展开更多
关键词 U-Net VGG16 CBAM 建筑物提取 whu建筑物数据
下载PDF
KU-Net:改进U-Net的高分辨率遥感影像建筑物提取方法
2
作者 刘卓涛 龚循强 +2 位作者 夏元平 陈晓勇 吴晋涛 《遥感信息》 CSCD 北大核心 2024年第5期121-131,共11页
针对遥感影像背景复杂导致的建筑物提取结果存在边界模糊、小目标漏检、地物误检等问题,提出一种基于改进U-Net的建筑物提取网络KU-Net(Keep border U-Net)。该网络在U-Net的基础上加入空洞空间金字塔池化和含注意力机制的横向连接模块... 针对遥感影像背景复杂导致的建筑物提取结果存在边界模糊、小目标漏检、地物误检等问题,提出一种基于改进U-Net的建筑物提取网络KU-Net(Keep border U-Net)。该网络在U-Net的基础上加入空洞空间金字塔池化和含注意力机制的横向连接模块,其中,空间空洞金字塔池化能够提升模型的感受野,横向连接模块对不同层级的跳跃连接特征进行融合,缓解特征丢失的情况,从而进一步提高精度。实验结果表明,该方法相比于其他对比方法,提取结果更为清晰准确,对边缘有较好的保持效果,定量结果更优。 展开更多
关键词 KU-Net 建筑物提取 空洞空间金字塔池化 whu建筑物数据 注意力机制
下载PDF
增强边缘信息的全卷积神经网络遥感影像建筑物变化检测 被引量:7
3
作者 陈婕 刘纪平 徐胜华 《测绘通报》 CSCD 北大核心 2023年第6期61-67,共7页
针对现有很多深度学习的建筑物变化检测方法未考虑图像的结构特征,导致建筑物边缘像素分割精度低的问题,本文提出了一种增强边缘信息的遥感影像建筑物变化检测模型。首先采用Canny算法和概率霍夫变换算法提取双时相影像中建筑物的直线... 针对现有很多深度学习的建筑物变化检测方法未考虑图像的结构特征,导致建筑物边缘像素分割精度低的问题,本文提出了一种增强边缘信息的遥感影像建筑物变化检测模型。首先采用Canny算法和概率霍夫变换算法提取双时相影像中建筑物的直线边缘特征图作为图像结构特征;然后将双时相影像及其对应的边缘特征图输入到增强边缘信息的全卷积神经网络(FCN)中;最后采用骰子损失和交叉熵损失加权组合函数衡量网络模型。试验表明,增强边缘信息的FCN网络在精度评价和视觉分析上具有一定的优越性。 展开更多
关键词 变化检测 建筑物 边缘信息提取 FCN whu数据集
下载PDF
基于注意力机制与DUsamplingU-Net网络的建筑物提取 被引量:4
4
作者 王圣杰 刘长星 杜嵩 《遥感信息》 CSCD 北大核心 2021年第4期109-118,共10页
针对常用语义分割模型因神经元接受域大小固定导致特征提取不充分、双线性上采样无法精确恢复像素级预测等问题,提出基于卷积核注意力机制和DUsampling(data-dependent upsampling)的卷积神经网络改进算法。算法引入卷积核注意力机制,... 针对常用语义分割模型因神经元接受域大小固定导致特征提取不充分、双线性上采样无法精确恢复像素级预测等问题,提出基于卷积核注意力机制和DUsampling(data-dependent upsampling)的卷积神经网络改进算法。算法引入卷积核注意力机制,利用选择性卷积核提取图像整体与局部细节特征,加强网络对建筑物特征的学习能力;在合并特征图之前将待融合的特征向下采样到特征图最低分辨率,通过DUpsampling分割标签空间的冗余准确地恢复像素级的预测;最后,结合卷积核注意力机制与DUpsampling构建SD-Unet模型,并在WHU数据集上进行验证。结果表明,该模型在交并比、总体精度、精确度、召回率以及F1分数上达到最优,分别为76.25%、98.86%、86.13%、87.07%和85.85%。SD-Unet模型加强网络对建筑物特征的学习能力及准确恢复特征图像素级的预测,比传统网络模型具有更好的分类性能和分类准确率。 展开更多
关键词 语义分割 卷积神经网络 whu建筑物数据 注意力机制 SD-Unet
下载PDF
融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取 被引量:4
5
作者 于明洋 陈肖娴 +1 位作者 张文焯 刘耀辉 《地球信息科学学报》 CSCD 北大核心 2022年第9期1785-1802,共18页
在高分辨率遥感影像中提取建筑物轮廓是地区基础建设信息统计的一项重要任务。适应性较强的深度学习方法已在建筑物提取研究中取得较大进展,受网络模型对影像特征表达的局限性,存在局部建筑轮廓边缘模糊的问题。本研究提出一种基于注意... 在高分辨率遥感影像中提取建筑物轮廓是地区基础建设信息统计的一项重要任务。适应性较强的深度学习方法已在建筑物提取研究中取得较大进展,受网络模型对影像特征表达的局限性,存在局部建筑轮廓边缘模糊的问题。本研究提出一种基于注意力的U型特征金字塔网络(AFP-Net)可以聚焦高分遥感影像中不同形态的建筑物结构,实现建筑物轮廓的高效提取。AFP-Net模型通过基于网格的注意力阀门Attention Gates模块抑制输入影像中的无关区域,凸出影像中建筑物的显性特征;通过特征金字塔注意力Feature Pyramid Attention模块增加高维特征图的感受野,减少采样中的细节损失。基于WHU建筑物数据集训练优化AFP-Net模型,测试结果表明AFP-Net模型能够较清晰地识别出建筑物轮廓,在预测性能上有更好的目视效果,在测试结果的总体精度和交并比上较U-Net模型分别提高0.67%和1.34%。结果表明,AFP-Net模型实现了高分遥感影像中建筑物提取的结果精度及预测性能的有效提升。 展开更多
关键词 高分辨率遥感影像 建筑物提取 深度学习 whu数据集 AFP-Net模型 注意力阀门 特征金字塔注意力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部