针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定...针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。展开更多
文摘针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。