In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave ...In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave model SWAN is applied to simulate the typhoon wave generated by Typhoon Winnie. The model results are compared with the TOPEX/POSEIDON and ERS-2 satellite altimeter data and analyzed in details. Then the distribution of wave fields are analyzed, with the results showing that applying SWAN to simulate large-scale domain can also fairly reproduce the observed features of waves and realistically reflect the distribution of typhoon waves.展开更多
Typhoon Winnin (1997) was one of the hurricanes that had extremely large eyewall ever revorded with a diameter of eyewall reaching 370 kin. Using the Penn State Uhiversity/National Center for Atmospheric Researeh me...Typhoon Winnin (1997) was one of the hurricanes that had extremely large eyewall ever revorded with a diameter of eyewall reaching 370 kin. Using the Penn State Uhiversity/National Center for Atmospheric Researeh mesoscale model MM5 with 3-kan grid horizontal spacing on the finest nested mesh, Winnie was successfully simulated in terms of track, intensity, eye and concentric eyewalls. The dynamic and thermal structures of concentric eyewalls were studied based on the model output. It was found that the concentric eyewails and their surrounding wind fields were asymmetric in observation as well as in simulation. Winale's outer eyewall was associated with a maximum wind ring, a warm moist ring, and a high vorticity ring. The inner eyewall was associated with a secondary maximum wind ring and a warm moist ring. Upward motion dominated the whole layer of inner eyewall and the area above 2-km altitude of the outer eyew031. Downward motion was found inside the eye and the moat. Radial inflow happened in the boundary layer of the outer eyewall and the moat, but radial outflow dominated the middle and upper levels of the outer eyewall.展开更多
Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during th...Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM). A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.展开更多
There are three pigs, Leo, Winnie and Lucky. They live in the Moon Wood. They all want to have a big and strong home, because the bad old wolf also lives in the Moon Wood, and it’s very very hungry. Just one year ago...There are three pigs, Leo, Winnie and Lucky. They live in the Moon Wood. They all want to have a big and strong home, because the bad old wolf also lives in the Moon Wood, and it’s very very hungry. Just one year ago, the bad old wolf even wanted to eat Little Red Riding Hood’s grandma!展开更多
基金Experiments Coupling Typhoons, Waves and Storm Surges in the South China Sea andEstimation and Prediction of Typhoon-inflicted Disasters, a project from the Research Fund for Tropical andMarine MeteorologyNatural Science Foundation of China (40333026)
文摘In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave model SWAN is applied to simulate the typhoon wave generated by Typhoon Winnie. The model results are compared with the TOPEX/POSEIDON and ERS-2 satellite altimeter data and analyzed in details. Then the distribution of wave fields are analyzed, with the results showing that applying SWAN to simulate large-scale domain can also fairly reproduce the observed features of waves and realistically reflect the distribution of typhoon waves.
基金Supported by the State 973 Key Program (2004CB418301)the National Natural Science Foundation of China under Grant Nos. 40375017, 40675022, and 60572184.
文摘Typhoon Winnin (1997) was one of the hurricanes that had extremely large eyewall ever revorded with a diameter of eyewall reaching 370 kin. Using the Penn State Uhiversity/National Center for Atmospheric Researeh mesoscale model MM5 with 3-kan grid horizontal spacing on the finest nested mesh, Winnie was successfully simulated in terms of track, intensity, eye and concentric eyewalls. The dynamic and thermal structures of concentric eyewalls were studied based on the model output. It was found that the concentric eyewails and their surrounding wind fields were asymmetric in observation as well as in simulation. Winale's outer eyewall was associated with a maximum wind ring, a warm moist ring, and a high vorticity ring. The inner eyewall was associated with a secondary maximum wind ring and a warm moist ring. Upward motion dominated the whole layer of inner eyewall and the area above 2-km altitude of the outer eyew031. Downward motion was found inside the eye and the moat. Radial inflow happened in the boundary layer of the outer eyewall and the moat, but radial outflow dominated the middle and upper levels of the outer eyewall.
基金supported by the National Nature Science Foundation of China(Grant No.40776007)Projects Founded by the Science and Technology Department of Zhejiang Province(Grant No.2009C03008-1)
文摘Variations in coastline geometry caused by coastal engineering affect tides, storm surges, and storm tides. Three cluster land reclamation projects have been planned for construction in the Jiaojiang Estuary during the period from 2011 to 2023. They will cause significant changes in coastline geometry. In this study, a surge-tide coupled model was established based on a three-dimensional finite-volume coastal ocean model (FVCOM). A series of numerical experiments were carried out to investigate the effects of variations in coastline geometry on tides, storm surges, and storm tides. This model was calibrated using data observed at the Haimen and Ruian gauge stations and then used to reproduce the tides, storm surges, and storm tides in the Jiaojiang Estuary caused by Typhoon Winnie in 1997. Results show that the high tide level, peak storm surge, and high storm tide level at the Haimen Gauge Station increased along with the completion of reclamation projects, and the maximum increments caused by the third project were 0.13 m, 0.50 m, and 0.43 m, respectively. The envelopes with maximum storm tide levels of 7.0 m and 8.0 m inside the river mouth appeared to move seaward, with the latter shifting 1.8 km, 3.3 km, and 4.4 km due to the first project, second project, and third project, respectively. The results achieved in this study contribute to reducing the effects of, and preventing storm disasters after the land reclamation in the Jiaojiang Estuary.
文摘There are three pigs, Leo, Winnie and Lucky. They live in the Moon Wood. They all want to have a big and strong home, because the bad old wolf also lives in the Moon Wood, and it’s very very hungry. Just one year ago, the bad old wolf even wanted to eat Little Red Riding Hood’s grandma!