Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs...Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs has been done,including converting the MAC functions from SDL to C to ASM with tow RISC targts. The study shows that implementing MAC. functions should consider real-time protocol re3quirements by dividing MAC functions into sets. We enhance the set of time-critical functions implemented to dedicated hardwere and the set of non-time-critical functions implemented to software run with embedded processor. This heterogeneous system is proposed in consideration of our study results to reduce popwer consumption.展开更多
A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802....A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.展开更多
With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource...With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.展开更多
The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameter...The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.展开更多
In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contendi...In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.展开更多
文摘Applying IEEE802.11MAC protocols in baltery-powered devices make power consumption critical demand upon implementation.A statistical study on operator/bit usage,the weight of operator and operator type in the programs has been done,including converting the MAC functions from SDL to C to ASM with tow RISC targts. The study shows that implementing MAC. functions should consider real-time protocol re3quirements by dividing MAC functions into sets. We enhance the set of time-critical functions implemented to dedicated hardwere and the set of non-time-critical functions implemented to software run with embedded processor. This heterogeneous system is proposed in consideration of our study results to reduce popwer consumption.
文摘A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.
基金partially supported by the Academy of Finland (Decision No. 284748, 288473)
文摘With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.
基金Project(60673164) supported by the National Natural Science Foundation of ChinaProject(06JJ10009) supported by the Natural Science Foundation of Hunan Province, China+2 种基金Project(20060533057) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2008CB317107) supported by the Major State Basic Research and Development Program of ChinaProject(NCET-05-0683) supported by the Program for New Century Excellent Talents in University
文摘The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.
基金Supported by National Natural Science Foundation of China ( No. 60472078) , and Cisco University Research Program Fund at Community Foundation Silicon Valley( No. 20029303 ).
文摘In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.