The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer.Our previous studies highlighted the potent anti-cancer properties of the princ...The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer.Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis(YTE-17),attributing these effects to the regu-lation of multiple signaling pathways.However,knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited.In this study,we conducted isobaric tags for relative and absolute quantification(iTRAQ)analysis on intestinal epithelial cells(IECs)exposed YTE-17,both in vitro and in vivo,revealing a significant inhibition of the Wnt family member 5a(Wnt5a)/c-Jun N-terminal kinase(JNK)signaling pathway.Subsequently,we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment(TME),specifically focusing on macrophage-mediated T helper 17(Th17)cell induction in a colitis-associated cancer(CAC)model with Wnt5a deletion.Additionally,we performed the single-cell RNA sequencing(scRNA-seq)on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition,lineage,and functional status of immune mesenchymal cells during different stages of colorectal cancer(CRC)progression.Remarkably,our findings demon-strate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17,leading to the restoration of regulatory T(Treg)/Th17 cell balance in azoxymethane(AOM)/dextran sodium sulfate(DSS)model.Furthermore,we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages.Notably,our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical b-catenin oncogenic pathway in vivo.Specifically,we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with b-catenin activity within the TME,involving macrophages and T cells.In summary,our study undergoes the po-tential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment,thereby mitigating the risk of malignancies.展开更多
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb...Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.展开更多
基金supported by“Jiaotong University Star”Program,China(Grant No.:YG2022QN082)the National Natural Science Foundation of China(Grant No.:82204887)+1 种基金the Science Foundation for Shanghai Committee of Science Project,China(Grant Nos.:21S21901400,23S21901200)the Natural Science Research Foundation of Jiading District,China(Grant No.:JDKW-2021-0023).
文摘The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer.Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis(YTE-17),attributing these effects to the regu-lation of multiple signaling pathways.However,knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited.In this study,we conducted isobaric tags for relative and absolute quantification(iTRAQ)analysis on intestinal epithelial cells(IECs)exposed YTE-17,both in vitro and in vivo,revealing a significant inhibition of the Wnt family member 5a(Wnt5a)/c-Jun N-terminal kinase(JNK)signaling pathway.Subsequently,we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment(TME),specifically focusing on macrophage-mediated T helper 17(Th17)cell induction in a colitis-associated cancer(CAC)model with Wnt5a deletion.Additionally,we performed the single-cell RNA sequencing(scRNA-seq)on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition,lineage,and functional status of immune mesenchymal cells during different stages of colorectal cancer(CRC)progression.Remarkably,our findings demon-strate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17,leading to the restoration of regulatory T(Treg)/Th17 cell balance in azoxymethane(AOM)/dextran sodium sulfate(DSS)model.Furthermore,we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages.Notably,our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical b-catenin oncogenic pathway in vivo.Specifically,we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with b-catenin activity within the TME,involving macrophages and T cells.In summary,our study undergoes the po-tential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment,thereby mitigating the risk of malignancies.
基金supported by the Natural Science Research Project of colleges and Universities in Anhui Province[2022AH052336]High Level Talent Research Initiation Fund Of Anhui Medical College[2023RC004]。
文摘Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.