Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ...Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.展开更多
Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate ...Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate photocatalysts.Herein,a novel S-scheme Sb2WO6/g-C3N4 nanocomposite was fabricated by an ultrasound-assisted method,which exhibited excellent performance for photocatalytic ppb-level NO removal.Compared with the pure constituents of the nanocomposite,the as-prepared 15%-Sb2WO6/g-C3N4 photocatalyst could remove more than 68%continuous-flowing NO(initial concentration:400 ppb)under visible-light irradiation in 30 min.The findings of the trapping experiments confirmed that•O2^–and h+were the important active species in the NO oxidation reaction.Meanwhile,the transient photocurrent response and PL spectroscopy analyses proved that the unique S-scheme structure of the samples could enhance the charge separation efficiency.In situ DRIFTS revealed that the photocatalytic reaction pathway of NO removal over the Sb2WO6/g-C3N4 nanocomposite occurred via an oxygen-induced route.The present work proposes a new concept for fabricating efficient photocatalysts for photocatalytic ppb-level NO oxidation and provides deeper insights into the mechanism of photocatalytic NO oxidation.展开更多
A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigate...A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.展开更多
The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photo...The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.展开更多
Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored ...Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.展开更多
g-C3N4 is a metal-free semiconductor and a potential candidate for photocatalytic H2 production,however,the drawbacks,rapid recombination rate and limited migration efficiency of photogenerated carriers,restrict its p...g-C3N4 is a metal-free semiconductor and a potential candidate for photocatalytic H2 production,however,the drawbacks,rapid recombination rate and limited migration efficiency of photogenerated carriers,restrict its photocatalytic activity.Herein,Co(II)as a hole cocatalyst modified P-doped g-C3N4 were successfully prepared to ameliorate the separation efficiency of photoinduced carriers and enhance the photocatalytic hydrogen production.The photocatalytic results demonstrated that the P-doped g-C3N4(PCN)exhibited higher photocatalytic activity compared with pure g-C3N4,while Co(II)/PCN photocatalyst exhibited further enhancement of photocatalytic performance.The proposed possible mechanism based on various characterizations is that P-doping can modulate the electronic structure of g-C3N4 to boost the separation of photogenerated-e-and h+;while the synergistic effect of both Co(II)(as hole cocatalyst)and Pt(as electron cocatalyst)can not only lead to the directional shunting of photogenerated e+-h?pairs,but further accelerate the photogenerated electrons transfer to Pt in order to join the photocatalytic reduction process for hydrogen evolution.As a result,the transportation and separation of photoinduced carriers were accelerated to greatest extent in the Pt/Co(II)/PCN photocatalyst.展开更多
The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyan...The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.展开更多
The polycrystalline phase WO_3/g-C_3N_4 was synthesized under stirring using tungstenic acid(H_2WO_4) and graphitic carbon nitride(g-C_3N_4) as raw materials. The catalyst was characterized by X-ray diffraction(XRD), ...The polycrystalline phase WO_3/g-C_3N_4 was synthesized under stirring using tungstenic acid(H_2WO_4) and graphitic carbon nitride(g-C_3N_4) as raw materials. The catalyst was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),the Fourier transform infrared spectroscopy(FT-IR),and the Brunauer-Emmett-Teller analysis(BET). The polycrystalline phase WO_3/g-C_3N_4 was determined by XRD technique. The oxidative desulfurization process was investigated using WO_3/g-C_3N_4 as the catalyst, 30% hydrogen peroxide(H202) as the oxidant, and 1-butyl-3-methylimidazolium tetrafluoroborate([bmim]BF4) ionic liquids(ILs) as the extractant. The operating conditions, including H_2WO_4 amount, IL dose, H_2 O_2 volume, temperature, catalyst dosage, and types of sulfur compounds,were systematically researched. The desulfurization rate could reach 98.46% for removing dibenzothiophene(DBT) from the model oil under optimal reaction conditions. In addition, the catalytic activity was slightly decreased after five recycles of catalysts. The reaction kinetics analysis shows that the oxidative desulfurization system was in accord with the first-order reaction kinetics equation. The mechanism of oxidative desulfurization was proposed.展开更多
Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-sc...Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.展开更多
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years.In this study,noble-metal-free Ni3N was used as an active cocatalyst to enhance...Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years.In this study,noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation(λ>420 nm).The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4,which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation.The hydrogen evolution rate reached^305.4μmol h^-1 g^-1,which is about three times higher than that of pristine g-C3N4,and the apparent quantum yield(AQY)was^0.45%atλ=420.Furthermore,the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate,even after five cycles under visible-light irradiation.Finally,a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.展开更多
基金supported by the National Natural Science Foundation of China (51672089)the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098)+1 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7)the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04)~~
文摘Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.
文摘Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate photocatalysts.Herein,a novel S-scheme Sb2WO6/g-C3N4 nanocomposite was fabricated by an ultrasound-assisted method,which exhibited excellent performance for photocatalytic ppb-level NO removal.Compared with the pure constituents of the nanocomposite,the as-prepared 15%-Sb2WO6/g-C3N4 photocatalyst could remove more than 68%continuous-flowing NO(initial concentration:400 ppb)under visible-light irradiation in 30 min.The findings of the trapping experiments confirmed that•O2^–and h+were the important active species in the NO oxidation reaction.Meanwhile,the transient photocurrent response and PL spectroscopy analyses proved that the unique S-scheme structure of the samples could enhance the charge separation efficiency.In situ DRIFTS revealed that the photocatalytic reaction pathway of NO removal over the Sb2WO6/g-C3N4 nanocomposite occurred via an oxygen-induced route.The present work proposes a new concept for fabricating efficient photocatalysts for photocatalytic ppb-level NO oxidation and provides deeper insights into the mechanism of photocatalytic NO oxidation.
基金supported by the Scientific Research Project from Hubei Provincial Department of Education(Q20181808)the Research and Innovation Initiatives of Wuhan Polytechnic University(2018J04,2018Y07)~~
文摘A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.
文摘The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.
文摘Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.
基金supported by the National Natural Science Foundation of China(51672113)QingLan Project Foundation of Jiangsu Province(201611)~~
文摘g-C3N4 is a metal-free semiconductor and a potential candidate for photocatalytic H2 production,however,the drawbacks,rapid recombination rate and limited migration efficiency of photogenerated carriers,restrict its photocatalytic activity.Herein,Co(II)as a hole cocatalyst modified P-doped g-C3N4 were successfully prepared to ameliorate the separation efficiency of photoinduced carriers and enhance the photocatalytic hydrogen production.The photocatalytic results demonstrated that the P-doped g-C3N4(PCN)exhibited higher photocatalytic activity compared with pure g-C3N4,while Co(II)/PCN photocatalyst exhibited further enhancement of photocatalytic performance.The proposed possible mechanism based on various characterizations is that P-doping can modulate the electronic structure of g-C3N4 to boost the separation of photogenerated-e-and h+;while the synergistic effect of both Co(II)(as hole cocatalyst)and Pt(as electron cocatalyst)can not only lead to the directional shunting of photogenerated e+-h?pairs,but further accelerate the photogenerated electrons transfer to Pt in order to join the photocatalytic reduction process for hydrogen evolution.As a result,the transportation and separation of photoinduced carriers were accelerated to greatest extent in the Pt/Co(II)/PCN photocatalyst.
基金Supported by the Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(No.2016ZX05060)the Demonstration of Integrated Management of Rocky Desertification and Enhancement of Ecological Service Function in Karst Peak-cluster Depression(No.2016YFC0502400)National Natural Science Foundation of China(No.51709254)
文摘The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.
基金the financial support of the Doctoral Fund of Liaoning Province (201501105)
文摘The polycrystalline phase WO_3/g-C_3N_4 was synthesized under stirring using tungstenic acid(H_2WO_4) and graphitic carbon nitride(g-C_3N_4) as raw materials. The catalyst was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),the Fourier transform infrared spectroscopy(FT-IR),and the Brunauer-Emmett-Teller analysis(BET). The polycrystalline phase WO_3/g-C_3N_4 was determined by XRD technique. The oxidative desulfurization process was investigated using WO_3/g-C_3N_4 as the catalyst, 30% hydrogen peroxide(H202) as the oxidant, and 1-butyl-3-methylimidazolium tetrafluoroborate([bmim]BF4) ionic liquids(ILs) as the extractant. The operating conditions, including H_2WO_4 amount, IL dose, H_2 O_2 volume, temperature, catalyst dosage, and types of sulfur compounds,were systematically researched. The desulfurization rate could reach 98.46% for removing dibenzothiophene(DBT) from the model oil under optimal reaction conditions. In addition, the catalytic activity was slightly decreased after five recycles of catalysts. The reaction kinetics analysis shows that the oxidative desulfurization system was in accord with the first-order reaction kinetics equation. The mechanism of oxidative desulfurization was proposed.
文摘Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
基金financially supported by the National Key Research and Development Program of China(2017YFA0402800)the National Natural Science Foundation of China(51772285,21473170,51878004)+1 种基金the Natural Science Fund of of Anhui Province(1808085ME139)the Fundamental Research Funds for the Central Universities~~
文摘Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years.In this study,noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation(λ>420 nm).The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4,which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation.The hydrogen evolution rate reached^305.4μmol h^-1 g^-1,which is about three times higher than that of pristine g-C3N4,and the apparent quantum yield(AQY)was^0.45%atλ=420.Furthermore,the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate,even after five cycles under visible-light irradiation.Finally,a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.