V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
溶胶-凝胶和浸渍相结合的方法制备锰掺杂WO3-TiO2复合光催化剂,RXD表征,考察WO3和Mn2+掺入量、焙烧温度、焙烧时间及催化剂用量对光催化降解甲基橙的影响。结果表明,500℃焙烧2 h,掺杂量n(Mn2+)∶n(WO3)∶n(TiO2)=0.8∶1∶100时,光催化...溶胶-凝胶和浸渍相结合的方法制备锰掺杂WO3-TiO2复合光催化剂,RXD表征,考察WO3和Mn2+掺入量、焙烧温度、焙烧时间及催化剂用量对光催化降解甲基橙的影响。结果表明,500℃焙烧2 h,掺杂量n(Mn2+)∶n(WO3)∶n(TiO2)=0.8∶1∶100时,光催化活性最高,光催化降解甲基橙溶液,120 m in后,降解率达90%,比单纯TiO2的光催化活性提高81%。展开更多
A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer...A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid.展开更多
Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-...Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.展开更多
The aim of this study was to develop a method to prepare WO<sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span>&l...The aim of this study was to develop a method to prepare WO<sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film which has high anticorrosion property when it was coated on type 304 stainless steel. A series of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-modified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols were synthesized by peroxo-sol gel method using TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> as the starting materials. TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> was converted to Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> gel. H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> were added in Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> solution and heated at 95<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was transparent, in neutral (pH^7) solution, stable suspension without surfactant, nano-crystallite and no annealing is needed after coating, and very stable for 2 years in stock. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was formed with anatase crystalline structure. These sols were characterized by XRD, TEM, and XPS. The sol was used to coat on stainless steel 304 by dip-coating. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> was anatase in structure as characterized by X-ray diffraction. There were no WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> XRD peaks in the WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols, indicating that WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> particles were very small, possibly incorporating into TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> structure, providing the amount of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was very small. The TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> particles were rhombus shape. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> had smaller size area than pure TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">. The SEM results showed that the film coated on the glass substrate was very uniform. All films were nonporous and dense films. Its hardness reached 2 H after drying at 100<span style="white-space:normal;">°</span>C, and reached 5 H after annealing at 400<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film coated on 304 stainless steel had better anticorrosion capability than the unmodified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film under UV light illumination. The optimum weight ratio of TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">: WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was 100:4.</span>展开更多
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
文摘溶胶-凝胶和浸渍相结合的方法制备锰掺杂WO3-TiO2复合光催化剂,RXD表征,考察WO3和Mn2+掺入量、焙烧温度、焙烧时间及催化剂用量对光催化降解甲基橙的影响。结果表明,500℃焙烧2 h,掺杂量n(Mn2+)∶n(WO3)∶n(TiO2)=0.8∶1∶100时,光催化活性最高,光催化降解甲基橙溶液,120 m in后,降解率达90%,比单纯TiO2的光催化活性提高81%。
基金Project(21471054)supported by the National Natural Science Foundation of China
文摘A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174137,11474215 and 21204058the Natural Science Foundation for the Youth of Jiangsu Province under Grant No BK20130284the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.
文摘The aim of this study was to develop a method to prepare WO<sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film which has high anticorrosion property when it was coated on type 304 stainless steel. A series of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-modified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols were synthesized by peroxo-sol gel method using TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> as the starting materials. TiCl</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> was converted to Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> gel. H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and Na</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">WO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> were added in Ti(OH)</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> solution and heated at 95<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was transparent, in neutral (pH^7) solution, stable suspension without surfactant, nano-crystallite and no annealing is needed after coating, and very stable for 2 years in stock. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sol was formed with anatase crystalline structure. These sols were characterized by XRD, TEM, and XPS. The sol was used to coat on stainless steel 304 by dip-coating. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> was anatase in structure as characterized by X-ray diffraction. There were no WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> XRD peaks in the WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> sols, indicating that WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> particles were very small, possibly incorporating into TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> structure, providing the amount of WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was very small. The TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> particles were rhombus shape. WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> had smaller size area than pure TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">. The SEM results showed that the film coated on the glass substrate was very uniform. All films were nonporous and dense films. Its hardness reached 2 H after drying at 100<span style="white-space:normal;">°</span>C, and reached 5 H after annealing at 400<span style="white-space:normal;">°</span>C. The WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">-TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film coated on 304 stainless steel had better anticorrosion capability than the unmodified TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> film under UV light illumination. The optimum weight ratio of TiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">: WO</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was 100:4.</span>