期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Multi-strategy hybrid whale optimization algorithms for complex constrained optimization problems
1
作者 王振宇 WANG Lei 《High Technology Letters》 EI CAS 2024年第1期99-108,共10页
A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low opti... A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm. 展开更多
关键词 whale optimization algorithm(woa) good point set nonlinear convergence factor siege mechanism
下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:9
2
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(woa)
下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
3
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided woa) adaptive dynamic particle swarm algorithm(AD-PSO)
下载PDF
Optimization Ensemble Weights Model for Wind Forecasting System
4
作者 Amel Ali Alhussan El-Sayed M.El-kenawy +3 位作者 Hussah Nasser AlEisa M.El-SAID Sayed A.Ward Doaa Sami Khafaga 《Computers, Materials & Continua》 SCIE EI 2022年第11期2619-2635,共17页
Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.Howeve... Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.However,the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem.This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models.This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization(PSO-Guided WOA).The proposed optimized weighted ensemble predicts the wind direction given a set of input features.The conducted experiments employed the wind power forecasting dataset,freely available on Kaggle and developed to predict the regular power generation at seven wind farms over forty-eight hours.The recorded results of the conducted experiments emphasize the effectiveness of the proposed ensemble in achieving accurate predictions of the wind direction.In addition,a comparison is established between the proposed optimized ensemble and other competing optimized ensembles to prove its superiority.Moreover,statistical analysis using one-way analysis of variance(ANOVA)and Wilcoxon’s rank-sum are provided based on the recorded results to confirm the excellent accuracy achieved by the proposed optimized weighted ensemble. 展开更多
关键词 Guided Whale optimization Algorithm(Guided woa) forecasting machine learning weighted ensemble model wind direction
下载PDF
Learning-Based Dynamic Connectivity Maintenance for UAV-Assisted D2D Multicast Communication 被引量:1
5
作者 Jingjing Wang Yanjing Sun +3 位作者 Bowen Wang Shenshen Qian Zhijian Tian Xiaolin Wang 《China Communications》 SCIE CSCD 2023年第10期305-322,共18页
Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w... Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario. 展开更多
关键词 cluster-head selection whale optimization algorithm(woa) balanced spanning tree(BST) multi-hop link establishment dynamic connectivity maintenance
下载PDF
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
6
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 Hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(woa)
下载PDF
基于镜像选择的改进鲸鱼优化算法 被引量:5
7
作者 李璟楠 乐美龙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期115-123,共9页
针对鲸鱼优化算法收敛速度慢、精度低、易陷入局部最优解的缺点,提出了一种基于镜像选择的改进鲸鱼优化算法(Whale optimization algorithm based-on mirror selection,WOA-MS)。具体改进包括:(1)为了平衡全局搜索和局部开采,提出了一... 针对鲸鱼优化算法收敛速度慢、精度低、易陷入局部最优解的缺点,提出了一种基于镜像选择的改进鲸鱼优化算法(Whale optimization algorithm based-on mirror selection,WOA-MS)。具体改进包括:(1)为了平衡全局搜索和局部开采,提出了一种基于Branin函数的自适应非线性惯性权重;(2)为了提高算法的个体质量和收敛速度,提出了一种镜像选择方法。通过对若干种测试函数进行优化,并与其他三种算法的实验结果进行比较,证明了WOA-MS具有良好的优化性能。 展开更多
关键词 惯性权重 镜像选择 鲸鱼优化算法(Whale optimization algorithm based-on mirror selection woa)
下载PDF
HDLIDP: A Hybrid Deep Learning Intrusion Detection and Prevention Framework
8
作者 Magdy M.Fadel Sally M.El-Ghamrawy +2 位作者 Amr M.T.Ali-Eldin Mohammed K.Hassan Ali I.El-Desoky 《Computers, Materials & Continua》 SCIE EI 2022年第11期2293-2312,共20页
Distributed denial-of-service(DDoS)attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks.Furthermore,the enormous number of connected devices makes it d... Distributed denial-of-service(DDoS)attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks.Furthermore,the enormous number of connected devices makes it difficult to operate such a network effectively.Software defined networks(SDN)are networks that are managed through a centralized control system,according to researchers.This controller is the brain of any SDN,composing the forwarding table of all data plane network switches.Despite the advantages of SDN controllers,DDoS attacks are easier to perpetrate than on traditional networks.Because the controller is a single point of failure,if it fails,the entire network will fail.This paper offers a Hybrid Deep Learning Intrusion Detection and Prevention(HDLIDP)framework,which blends signature-based and deep learning neural networks to detect and prevent intrusions.This framework improves detection accuracy while addressing all of the aforementioned problems.To validate the framework,experiments are done on both traditional and SDN datasets;the findings demonstrate a significant improvement in classification accuracy. 展开更多
关键词 Software defined networks(SDN) distributed denial of service attack(DDoS) signature-based detection whale optimization algorism(woa) deep learning neural network classifier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部