The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesop...The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts show a typical brick-concrete liked framework with a high surface area(179.3 m^(2)·g^(-1)),large mesopore size(10.6 nm),uniform particle size(~400 nm),and ultrathin shell thickness(~75 nm).The brick anatase nanocrystals and concrete amorphous SiO_(2)networks can selectively rivet Pt nanoparticles and WO_(x)nanocluster species,respectively,thus constructing two interfaces for effective adsorption,rapidly catalytic dehydration and hydrogenation processes.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts deliver a high selectivity of 53.8%for 1,3-propanediol(1,3-PDO)at a very high glycerol conversion of 85.0%.As a result,a favorable 1,3-PDO yield of 45.7%can be obtained with excellent stability,which is among the best performances of previously reported catalysts.This work paves a new way to synthesize catalysts with high selectivity,high activity and high stability.展开更多
基金This work was supported by the National Key R&D Program of China(Nos.2022YFA1503501 and 2018YFA0209401)the National Natural Science Foundation of China(Nos.22088101,21975050 and U21A20329)+2 种基金the Program of Shanghai Academic Research Leader(No.21XD1420800)the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100(No.21TQ008)the Fundamental Research Funds for the Central Universities(No.20720220010).
文摘The selective hydrogenolysis of glycerol exhibits great prospects,while the catalysts with high selectivity and activity are still missing and need to be created urgently.Herein,we report the synthesis of hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts show a typical brick-concrete liked framework with a high surface area(179.3 m^(2)·g^(-1)),large mesopore size(10.6 nm),uniform particle size(~400 nm),and ultrathin shell thickness(~75 nm).The brick anatase nanocrystals and concrete amorphous SiO_(2)networks can selectively rivet Pt nanoparticles and WO_(x)nanocluster species,respectively,thus constructing two interfaces for effective adsorption,rapidly catalytic dehydration and hydrogenation processes.The hollow mesoporous Pt/WO_(x)/SiO_(2)-TiO_(2)catalysts deliver a high selectivity of 53.8%for 1,3-propanediol(1,3-PDO)at a very high glycerol conversion of 85.0%.As a result,a favorable 1,3-PDO yield of 45.7%can be obtained with excellent stability,which is among the best performances of previously reported catalysts.This work paves a new way to synthesize catalysts with high selectivity,high activity and high stability.