期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于WPSO-BP和L-MBWO的多翼离心风机优化研究
1
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
下载PDF
一种用于基因调控网络建模的CGP-WPSO混合算法 被引量:8
2
作者 蔡昕烨 牛耘 +1 位作者 黄志球 范大娟 《计算机科学》 CSCD 北大核心 2012年第9期180-182,197,共4页
依靠基因调控网络来预测农作物的表现型,对于保障全球的粮食安全有着极其重要的意义。提出了一种基于笛卡尔遗传规划(Cartesian genetic programming)和线性递减惯性权重粒子群优化(linear decreasing inertia weightparticle swarm opt... 依靠基因调控网络来预测农作物的表现型,对于保障全球的粮食安全有着极其重要的意义。提出了一种基于笛卡尔遗传规划(Cartesian genetic programming)和线性递减惯性权重粒子群优化(linear decreasing inertia weightparticle swarm optimization)的混合算法,用于基因调控网络的建模。进一步,为了验证算法的有效性,将算法应用于拟南芥开花调控系统的模型重建问题。最后通过计算机仿真实验表明,该算法能够根据农作物的基因型和环境情况,重建出能够较精确地预测农作物表现型的基因调控网络模型。 展开更多
关键词 拟南芥开花调控系统 基因调控网络 基因编程 粒子群算法 CGP-wpso混合算法
下载PDF
考虑光伏逆变器剩余容量的配电网无功优化 被引量:11
3
作者 吴杰 赵凡凡 赵丽霞 《电工电能新技术》 CSCD 北大核心 2017年第1期38-43,共6页
在保证光伏电源有功出力最大的情况下,将光伏逆变器的剩余容量作为连续可调的无功电源研究了含光伏电源的配电网无功优化问题。在分析光伏发电出力随机性和不确定性的基础上,建立了光伏电源出力的概率分布模型,并以配电网有功网损和总... 在保证光伏电源有功出力最大的情况下,将光伏逆变器的剩余容量作为连续可调的无功电源研究了含光伏电源的配电网无功优化问题。在分析光伏发电出力随机性和不确定性的基础上,建立了光伏电源出力的概率分布模型,并以配电网有功网损和总电压偏差之和最小为目标函数,建立了考虑光伏逆变器剩余容量的配电网无功优化模型,采用线性递减权重粒子群算法(Lin WPSO)对离散变量进行处理,并寻求无功优化最优解。通过IEEE33节点系统算例仿真,验证了本文所提出的模型和方法更接近实际,可以有效降低配电网总电压偏差,改善配电网电压水平,降低配电网有功网损,验证了本文模型和方法的正确性和有效性。 展开更多
关键词 配电网 光伏电源 光伏逆变器剩余容量 线性递减权重粒子群算法 无功优化
下载PDF
基于加权粒子群优化的LSSVM的钢铁企业电力负荷预测 被引量:12
4
作者 李顺昕 秦砺寒 +2 位作者 胥永兰 牛东晓 王智敏 《华北电力大学学报(自然科学版)》 CAS 北大核心 2014年第6期104-108,共5页
钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统... 钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统的最小二乘支持向量机智能预测模型(LSSVM)参数进行优化,并利用某地区钢铁电力负荷样本数据进行验证,拟合结果显示,经过粒子群算法优化后的最小二乘智能向量机算法预测精度更高,收敛速度更快,具有良好的推广性和适应性。 展开更多
关键词 钢铁负荷预测 最小二乘支持向量机 粒子群优化 智能预测模型
下载PDF
WPS OFFICE飓风版实现跨平台办公
5
《个人电脑》 2004年第5期73-73,共1页
关键词 wpso FFICE飓风版 跨平台办公 金出软件股份公司 文字处理 中文简繁转换功能 软件特点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部