获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research a...获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。展开更多
利用NCEP每6 h 1次的1°×1°格点资料和中尺度模式WRF(V3.2),对2010年舟曲"0808"特大泥石流暴雨天气进行了数值模拟,运用模式输出资料对此次天气过程发生发展的机制进行了诊断分析。结果表明:舟曲强暴雨发生在...利用NCEP每6 h 1次的1°×1°格点资料和中尺度模式WRF(V3.2),对2010年舟曲"0808"特大泥石流暴雨天气进行了数值模拟,运用模式输出资料对此次天气过程发生发展的机制进行了诊断分析。结果表明:舟曲强暴雨发生在高原短波槽、低涡切变线和副热带高压等共同作用的有利天气形势下,三重嵌套的WRF模式对此次暴雨具有良好的模拟能力。低层强辐合、中层无辐散和高层强辐散的配置,以及强烈的上升运动是此次暴雨发生的主要动力条件。从低层向上延伸的等θse线高能舌和水平风垂直切变为暴雨的发生输送了大量的不稳定能量。中低层水汽辐合上升为暴雨的发生创造了有利的水汽条件。展开更多
利用美国高分辨率中尺度模式WRF(Weather Research and Forecast)式和WRF三维同化系统(WRF 3DVAR),以2006年"碧利斯"台风低压引发的暴雨天气过程为例,通过控制试验和同化试验的对比分析,探讨了高空和地面实况资料同化对台风低...利用美国高分辨率中尺度模式WRF(Weather Research and Forecast)式和WRF三维同化系统(WRF 3DVAR),以2006年"碧利斯"台风低压引发的暴雨天气过程为例,通过控制试验和同化试验的对比分析,探讨了高空和地面实况资料同化对台风低压"碧利斯"暴雨过程分析和预报的影响。初步的结果显示,同化高空和地面实况资料后对模式的初始场有明显的改进、对暴雨过程的降水落区和强度有不同程度的正反馈,更接近实况的降水。展开更多
本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WR...本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WRF),对2019年7月8日南大西洋上空的“射线状”云个例进行了水平分辨率为1 km的模拟研究,分析了云凝结核浓度、气温、垂直运动速度、水汽混合比的垂直结构和水汽的水平分布。研究结论显示:“射线状”云是一种主要发生在低纬度地区的中尺度天气现象,且就大西洋和印度洋海域而言,多发生于南半球大洋上空,北半球夏季和秋季是“射线状”云的频发季节;每个“射线状”云臂单体出现处均对应有不同程度的上升运动,“射线状”云是具有对流性质的云;大气逆温层会限制云向高处发展,使得水汽被限制在逆温层高度以下,大范围的逆温层是塑造“射线状”云形态的重要因素。展开更多
WRF(weather research and forecasting)模式中参数化方案的选择与近地面风场的仿真模拟结果关系密切。为解决新疆北部不同地形地区风场模拟准确性的问题,采用WRF中尺度气象模式,探究4类参数化方案(边界层、微物理、陆面过程、近地面层...WRF(weather research and forecasting)模式中参数化方案的选择与近地面风场的仿真模拟结果关系密切。为解决新疆北部不同地形地区风场模拟准确性的问题,采用WRF中尺度气象模式,探究4类参数化方案(边界层、微物理、陆面过程、近地面层)以及次网格地形方案对新疆北部不同地形地区风场模拟结果的影响。结果表明:每组试验均能模拟出风速的变化趋势;陆面过程RUC(rapid update cycle)方案和微物理Lin(Purdue Lin)方案对平原地区模拟结果较好,陆面过程Noah方案和微物理WSM6(WRF single moment 6 class)方案对山区地形模拟结果较好,且对于平原和山谷地形,次网格地形方案对模拟地区均能起到较好的修正作用。展开更多
基于NCEP再分析资料,选取中低纬度滇西南普洱作为研究区域,利用WRF模式模拟2013年12月一次小雪及雪后霜冻天气过程,通过模式输出资料对降雪天气进行诊断分析。结果表明:此次降雪过程的主要影响系统为南支槽,降雪天气发生在强冷空气形成...基于NCEP再分析资料,选取中低纬度滇西南普洱作为研究区域,利用WRF模式模拟2013年12月一次小雪及雪后霜冻天气过程,通过模式输出资料对降雪天气进行诊断分析。结果表明:此次降雪过程的主要影响系统为南支槽,降雪天气发生在强冷空气形成的低空切变线北部;该过程大气为稳定性层结并具有湿斜压性,垂直剖面上MPV1正值中心向下延伸至500 h Pa,此高度以下MPV1以弱的正值为主;干冷空气的输送造成湿斜压性增强,MPV2负值中心达到-0.2PVU,同时配合南支槽提供的水汽条件形成了此次降雪天气。南支槽东移出境后,大气湿斜压性减弱(MPV2负值中心-0.05PVU);前期大气湿斜压性造成局地平流降温,与其后的对流稳定性及高层冷空气的向下输送引起辐射降温,共同造成了较强的混合型霜冻。WRF模式对中低纬滇西南降雪天气过程的范围、时间及雪后强降温天气有较好的模拟效果。展开更多
文摘获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。
文摘利用NCEP每6 h 1次的1°×1°格点资料和中尺度模式WRF(V3.2),对2010年舟曲"0808"特大泥石流暴雨天气进行了数值模拟,运用模式输出资料对此次天气过程发生发展的机制进行了诊断分析。结果表明:舟曲强暴雨发生在高原短波槽、低涡切变线和副热带高压等共同作用的有利天气形势下,三重嵌套的WRF模式对此次暴雨具有良好的模拟能力。低层强辐合、中层无辐散和高层强辐散的配置,以及强烈的上升运动是此次暴雨发生的主要动力条件。从低层向上延伸的等θse线高能舌和水平风垂直切变为暴雨的发生输送了大量的不稳定能量。中低层水汽辐合上升为暴雨的发生创造了有利的水汽条件。
文摘利用美国高分辨率中尺度模式WRF(Weather Research and Forecast)式和WRF三维同化系统(WRF 3DVAR),以2006年"碧利斯"台风低压引发的暴雨天气过程为例,通过控制试验和同化试验的对比分析,探讨了高空和地面实况资料同化对台风低压"碧利斯"暴雨过程分析和预报的影响。初步的结果显示,同化高空和地面实况资料后对模式的初始场有明显的改进、对暴雨过程的降水落区和强度有不同程度的正反馈,更接近实况的降水。
文摘本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WRF),对2019年7月8日南大西洋上空的“射线状”云个例进行了水平分辨率为1 km的模拟研究,分析了云凝结核浓度、气温、垂直运动速度、水汽混合比的垂直结构和水汽的水平分布。研究结论显示:“射线状”云是一种主要发生在低纬度地区的中尺度天气现象,且就大西洋和印度洋海域而言,多发生于南半球大洋上空,北半球夏季和秋季是“射线状”云的频发季节;每个“射线状”云臂单体出现处均对应有不同程度的上升运动,“射线状”云是具有对流性质的云;大气逆温层会限制云向高处发展,使得水汽被限制在逆温层高度以下,大范围的逆温层是塑造“射线状”云形态的重要因素。
文摘WRF(weather research and forecasting)模式中参数化方案的选择与近地面风场的仿真模拟结果关系密切。为解决新疆北部不同地形地区风场模拟准确性的问题,采用WRF中尺度气象模式,探究4类参数化方案(边界层、微物理、陆面过程、近地面层)以及次网格地形方案对新疆北部不同地形地区风场模拟结果的影响。结果表明:每组试验均能模拟出风速的变化趋势;陆面过程RUC(rapid update cycle)方案和微物理Lin(Purdue Lin)方案对平原地区模拟结果较好,陆面过程Noah方案和微物理WSM6(WRF single moment 6 class)方案对山区地形模拟结果较好,且对于平原和山谷地形,次网格地形方案对模拟地区均能起到较好的修正作用。
文摘基于NCEP再分析资料,选取中低纬度滇西南普洱作为研究区域,利用WRF模式模拟2013年12月一次小雪及雪后霜冻天气过程,通过模式输出资料对降雪天气进行诊断分析。结果表明:此次降雪过程的主要影响系统为南支槽,降雪天气发生在强冷空气形成的低空切变线北部;该过程大气为稳定性层结并具有湿斜压性,垂直剖面上MPV1正值中心向下延伸至500 h Pa,此高度以下MPV1以弱的正值为主;干冷空气的输送造成湿斜压性增强,MPV2负值中心达到-0.2PVU,同时配合南支槽提供的水汽条件形成了此次降雪天气。南支槽东移出境后,大气湿斜压性减弱(MPV2负值中心-0.05PVU);前期大气湿斜压性造成局地平流降温,与其后的对流稳定性及高层冷空气的向下输送引起辐射降温,共同造成了较强的混合型霜冻。WRF模式对中低纬滇西南降雪天气过程的范围、时间及雪后强降温天气有较好的模拟效果。