利用WRF(Weather Research Forecast)模式和1°×1°NCEP全球分析资料对2005年11月16日澳大利亚北部Tiwi岛上的一次热带深对流个例进行了数值模拟,对模式网格分辨率和微物理参数化方案的影响进行了敏感性试验,并与实测资料...利用WRF(Weather Research Forecast)模式和1°×1°NCEP全球分析资料对2005年11月16日澳大利亚北部Tiwi岛上的一次热带深对流个例进行了数值模拟,对模式网格分辨率和微物理参数化方案的影响进行了敏感性试验,并与实测资料进行了对比。试验结果显示:模式较好地再现了这次热带对流云的日变化特征,即早期降水由沿岸的海风锋初始对流形成,之后出现单体合并现象并最终形成成熟的深对流系统。但是,模式在模拟深对流系统出现的时间及位置方面仍然需要改进。敏感性试验显示,就本次个例而言,二重嵌套方案在降水分布以及降水强度方面的模拟结果比非嵌套方案更接近实际探测。另外,微物理过程参数化方案对降水量的模拟也有一定影响,采用Purdue Lin方案的模拟结果更接近于实测情况。展开更多
基于WRF(weather research and forecasting)中尺度数值模式,对2018年7月10日六盘山区一次典型的暴雨天气过程进行模拟,分析此次过程的动力场、水汽场、云降水微物理结构的演变特征,通过改变模式初始场中六盘山地形高度进行敏感性试验,...基于WRF(weather research and forecasting)中尺度数值模式,对2018年7月10日六盘山区一次典型的暴雨天气过程进行模拟,分析此次过程的动力场、水汽场、云降水微物理结构的演变特征,通过改变模式初始场中六盘山地形高度进行敏感性试验,对六盘山地形影响该地区降水机制进行讨论。结果表明:蒙古冷涡底部冷空气和副热带高压西侧暖湿气流在六盘山区交汇配合低层700 hPa切变线辐合抬升导致此次暴雨过程;控制试验较好地模拟出雨带的分布范围、强降水中心位置及动力场结构特征,在降水发展和旺盛阶段,东南暖湿气流受地形强迫抬升和地形绕流共同影响,六盘山西坡和东坡均为上升气流,配合700 hPa切变线系统在六盘山山脊处上升气流汇聚加强,将云水带到负温层形成过冷水,云水、冰晶、雪和霰在0℃层至-40℃层之间共存,有利于冰相粒子碰冻增长和贝吉龙过程发生;地形敏感性试验发现改变地形对降水落区范围影响不大,而地形增高使六盘山区降水量级显著增大,尤其强降水更多集中在迎风坡一侧(山脉东侧),地形强迫抬升作用使得上升气流和水汽的垂直输送进一步加强,云中冰相过程发展充分,过冷云水为雪和霰的增长提供有利条件,因此使得地面降水增多。展开更多
文摘利用WRF(Weather Research Forecast)模式和1°×1°NCEP全球分析资料对2005年11月16日澳大利亚北部Tiwi岛上的一次热带深对流个例进行了数值模拟,对模式网格分辨率和微物理参数化方案的影响进行了敏感性试验,并与实测资料进行了对比。试验结果显示:模式较好地再现了这次热带对流云的日变化特征,即早期降水由沿岸的海风锋初始对流形成,之后出现单体合并现象并最终形成成熟的深对流系统。但是,模式在模拟深对流系统出现的时间及位置方面仍然需要改进。敏感性试验显示,就本次个例而言,二重嵌套方案在降水分布以及降水强度方面的模拟结果比非嵌套方案更接近实际探测。另外,微物理过程参数化方案对降水量的模拟也有一定影响,采用Purdue Lin方案的模拟结果更接近于实测情况。
文摘基于WRF(weather research and forecasting)中尺度数值模式,对2018年7月10日六盘山区一次典型的暴雨天气过程进行模拟,分析此次过程的动力场、水汽场、云降水微物理结构的演变特征,通过改变模式初始场中六盘山地形高度进行敏感性试验,对六盘山地形影响该地区降水机制进行讨论。结果表明:蒙古冷涡底部冷空气和副热带高压西侧暖湿气流在六盘山区交汇配合低层700 hPa切变线辐合抬升导致此次暴雨过程;控制试验较好地模拟出雨带的分布范围、强降水中心位置及动力场结构特征,在降水发展和旺盛阶段,东南暖湿气流受地形强迫抬升和地形绕流共同影响,六盘山西坡和东坡均为上升气流,配合700 hPa切变线系统在六盘山山脊处上升气流汇聚加强,将云水带到负温层形成过冷水,云水、冰晶、雪和霰在0℃层至-40℃层之间共存,有利于冰相粒子碰冻增长和贝吉龙过程发生;地形敏感性试验发现改变地形对降水落区范围影响不大,而地形增高使六盘山区降水量级显著增大,尤其强降水更多集中在迎风坡一侧(山脉东侧),地形强迫抬升作用使得上升气流和水汽的垂直输送进一步加强,云中冰相过程发展充分,过冷云水为雪和霰的增长提供有利条件,因此使得地面降水增多。