期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lightweight and High-Performance Microwave Absorber Based on 2D WS2-RGO Heterostructures 被引量:11
1
作者 Deqing Zhang Tingting Liu +5 位作者 Junye Cheng Qi Cao Guangping Zheng Shuang Liang Hao Wang MaoSheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期21-35,共15页
Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene o... Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene oxide(WS2-rGO)heterostructure nanosheets were synthesized via a facile hydrothermal process;moreover,their dielectric and MA properties were reported for the first time.Remarkably,the maximum reflection loss(RL)of the sample-wax composites containing 40 wt% WS2-rGO was-41.5 dB at a thickness of 2.7 mm;furthermore,the bandwidth where RL<-10 dB can reach up to 13.62 GHz(4.38-18 GHz).Synergistic mechanisms derived from the interfacial dielectric coupling and multiple-interface scattering after hybridization of WS2 with rGO were discussed to explain the drastically enhanced microwave absorption performance.The results indicate these lightweight WS2-rGO nanosheets to be potential materials for practical electromagnetic wave-absorbing applications. 展开更多
关键词 2D ws2 nanosheets Reduced graphene oxide HETEROSTRUCTURE Microwave absorption
下载PDF
Intimately coupled WS_(2) nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage 被引量:2
2
作者 Ze-Jun Zhao Yu-Guang Chao +5 位作者 Fang Wang Jia-Yi Dai Yi-Fan Qin Xiao-Bing Bao Yong Yang Shao-Jun Guo 《Rare Metals》 SCIE EI CAS CSCD 2022年第4期1245-1254,共10页
Lithium-ion hybrid capacitors(LIHCs)have drawn extensive attention in fleld of energy storage.However,the absence of appropriate electrode materials with rapid kinetics restricted the overall performance of the capaci... Lithium-ion hybrid capacitors(LIHCs)have drawn extensive attention in fleld of energy storage.However,the absence of appropriate electrode materials with rapid kinetics restricted the overall performance of the capacitors.Herein,hierarchical N,P-codoped hollow car-bon nanospheres coupling with WS_(2) nanosheets(N,P-codoped HCNS/WS_(2)NSs)were fabricated for boosting lithium storage materials.Specially,the WS_(2) nanosheets with several layers embedded in the N,P-codoped hollow carbon nanospheres could not only enhance the conduc-tivity of composites,but also provide abundant channels for the rapid transfer of ions.As a result,as-prepared N,P-codoped HCNS/WS_(2) NSs demonstrated superior rate performance and long-term cycling stability.The reversible discharge capacity of 725.2 mAh·g^(-1) could be preserved after 1000 cycles at a current density of 1.0 A·g^(-1).Fur-thermore,LIHCs devices were assembled by using N,P-codoped HCNS/WS_(2) NSs and activated carbon(AC)as the cathode and anode,which exhibited high energy density of 166.7 Wh·kg^(-1) and power density of 5312.4 W·kg^(-1).Last but not least,the capacity almost had no obvious deterioration after 6000 cycles at a high current density of 10.0 A·g^(-1). 展开更多
关键词 N P-Codoped hollow nanospheres ws2 nanosheets Self-assembly Lithiumion anode Lithiumion hybrid capacitors
原文传递
PEGylated WS_2 nanosheets for X-ray computed tomography imaging and photothermal therapy 被引量:1
3
作者 Xiao-Zhen Cui Zhi-Guo Zhou +6 位作者 Yan Yang Jie Wei Jun Wang Ming-Wei Wang Hong Yang Ying-Jian Zhang Shi-Ping Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第6期749-754,共6页
WS2 nanosheets were prepared by the solvent-thermal method in the presence of n-butyl lithium, then the exfoliation under the condition of ultrasound. The formed WS2 nanosheets were conjugated with thiol-modified poly... WS2 nanosheets were prepared by the solvent-thermal method in the presence of n-butyl lithium, then the exfoliation under the condition of ultrasound. The formed WS2 nanosheets were conjugated with thiol-modified polyethylene glycol (PEG-SH) to improve the biocompatibility. The nanosheets (WS2- PEG) were able to inhibit the growth of a model HeLa cancer cell line in vitro due to the high photothermal conversion efficiency of ~35% irradiated by an 808 nm laser (1 W/cm^2). As a proof of concept, WS2-PEG nanosheets with the better X-ray attenuation property than the clinical computed tomography (CT) contrast agent (lohexol) could be performed for CT imaging of the lymph vessel. 展开更多
关键词 ws2 nanosheets CT imaging Photothermal therapy In vivo
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部