本文以壁挂式太阳能空气集热器(Wall-mounted Solar Air Collector,WSAC)为研究对象,采用现场实测和理论分析的方法,通过研究太阳辐射照度、送风量与WSAC瞬时效率以及纯效率的关联性,提出了综合考虑建筑能耗时变风量工况下提高WSAC运行...本文以壁挂式太阳能空气集热器(Wall-mounted Solar Air Collector,WSAC)为研究对象,采用现场实测和理论分析的方法,通过研究太阳辐射照度、送风量与WSAC瞬时效率以及纯效率的关联性,提出了综合考虑建筑能耗时变风量工况下提高WSAC运行效率的途径。而后,利用实体大实验房,分别采用连续定风量送风、变风量送风以及间歇定风量送风的运行方式,对WSAC热性能及节能效果进行了实验研究。结果表明,在考虑WSAC纯效率的情况下,变风量送风的运行效率优于其它送风方式,相对连续定风量送风节能63%,同时还得到了随着太阳辐射照度变化的最佳控制运行模式。展开更多
Walnut-shell activated carbon(WSAC) supported ferric oxide was modified by non-thermal plasma(NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge(DBD) was ...Walnut-shell activated carbon(WSAC) supported ferric oxide was modified by non-thermal plasma(NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge(DBD) was significantly promoted. The sample modified for10 min and 6.8 k V output(30 V input voltage) maintained 100% H2 S conversion over a long reaction time of 390 min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy(XPS), Brunauer–Emmett–Teller(BET) analysis and in-situ Fourier transform infrared spectroscopy(FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of0.4, 0.5 and 0.75 nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H2 S oxidation. From the in-situ FTIR result,transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H2 S adsorption-oxidation.展开更多
文摘本文以壁挂式太阳能空气集热器(Wall-mounted Solar Air Collector,WSAC)为研究对象,采用现场实测和理论分析的方法,通过研究太阳辐射照度、送风量与WSAC瞬时效率以及纯效率的关联性,提出了综合考虑建筑能耗时变风量工况下提高WSAC运行效率的途径。而后,利用实体大实验房,分别采用连续定风量送风、变风量送风以及间歇定风量送风的运行方式,对WSAC热性能及节能效果进行了实验研究。结果表明,在考虑WSAC纯效率的情况下,变风量送风的运行效率优于其它送风方式,相对连续定风量送风节能63%,同时还得到了随着太阳辐射照度变化的最佳控制运行模式。
基金supported by National Natural Science Foundation of China(Nos.21667015,51408282 and 21367016)
文摘Walnut-shell activated carbon(WSAC) supported ferric oxide was modified by non-thermal plasma(NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge(DBD) was significantly promoted. The sample modified for10 min and 6.8 k V output(30 V input voltage) maintained 100% H2 S conversion over a long reaction time of 390 min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy(XPS), Brunauer–Emmett–Teller(BET) analysis and in-situ Fourier transform infrared spectroscopy(FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of0.4, 0.5 and 0.75 nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H2 S oxidation. From the in-situ FTIR result,transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H2 S adsorption-oxidation.