本文利用灰气体加权平均模型(Weighted Sum of Gray Gases Model,WSGGM)对对流扩散火焰模型(OPPDIF)中的能量方程进行修正,并对高温扩散均相燃烧结构模型(Hot Diluted Diffusion Ignition,HDDI)在常规空气和富氧环境进行对冲火焰燃烧数...本文利用灰气体加权平均模型(Weighted Sum of Gray Gases Model,WSGGM)对对流扩散火焰模型(OPPDIF)中的能量方程进行修正,并对高温扩散均相燃烧结构模型(Hot Diluted Diffusion Ignition,HDDI)在常规空气和富氧环境进行对冲火焰燃烧数值模拟。结果表明,相对于标准模型,采用修正模型所得到的温度分布在常规空气和富氧气氛下均较低且温度分布特性变化较大。本文进一步明确无焰燃烧的临界条件,对高温扩散均相燃烧模型分析表明,在Tf较高且Xf较低时,甲烷燃料的化学热解区域消失,燃料在燃烧周期内只表现出热释放特性。通过建立的燃烧区域和燃烧路径分析得知,无焰富氧燃烧相比于空气无焰燃烧更容易达到但更难维持,而相对于常规有焰燃烧,无论是在常规空气气氛下还是在富氧气氛下,其化学反应速率均下降一个量级。而由于富氧环境下的CO2富集,抑制了H和OH基团的生成,使得C1反应链更加具有活性。展开更多
文摘本文利用灰气体加权平均模型(Weighted Sum of Gray Gases Model,WSGGM)对对流扩散火焰模型(OPPDIF)中的能量方程进行修正,并对高温扩散均相燃烧结构模型(Hot Diluted Diffusion Ignition,HDDI)在常规空气和富氧环境进行对冲火焰燃烧数值模拟。结果表明,相对于标准模型,采用修正模型所得到的温度分布在常规空气和富氧气氛下均较低且温度分布特性变化较大。本文进一步明确无焰燃烧的临界条件,对高温扩散均相燃烧模型分析表明,在Tf较高且Xf较低时,甲烷燃料的化学热解区域消失,燃料在燃烧周期内只表现出热释放特性。通过建立的燃烧区域和燃烧路径分析得知,无焰富氧燃烧相比于空气无焰燃烧更容易达到但更难维持,而相对于常规有焰燃烧,无论是在常规空气气氛下还是在富氧气氛下,其化学反应速率均下降一个量级。而由于富氧环境下的CO2富集,抑制了H和OH基团的生成,使得C1反应链更加具有活性。