期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种无线传感节点风能自供电系统的设计 被引量:5
1
作者 杨文海 《河南科学》 2013年第10期1655-1658,共4页
无线传感器网络凭借其体积小、布局灵活、可靠性强等优势,得到了日益深入的研究及应用,但是节点的工作寿命严重依赖供电电池的持续时间.为实现网络节点工作的持久性,研究了微型风力发电机供电的无线传感节点的设计,采用超低功耗电源管... 无线传感器网络凭借其体积小、布局灵活、可靠性强等优势,得到了日益深入的研究及应用,但是节点的工作寿命严重依赖供电电池的持续时间.为实现网络节点工作的持久性,研究了微型风力发电机供电的无线传感节点的设计,采用超低功耗电源管理电路,结合相应的MPPT算法(Maximum Power Point Tracking)实现风力发电机在变化风速下的最大功率点跟踪,并维持无线传感节点的稳定运行.实验结果表明,通过本电源管理电路及MPPT算法,风能采集单元对电机输出电能的转换效率提高到了75%,所采集能量提高为改进前的三倍,本设计可使无线传感节点依靠风能独立运行,具有一定的应用前景. 展开更多
关键词 无线传感网络 自供电 风能采集 buck—boost MPPT
下载PDF
Autonomous Wireless Sensors Network Based on Piezoelectric Energy Harvesting 被引量:1
2
作者 Alex Mouapi Nadir Hakem Gilles Y. Delisle 《Open Journal of Antennas and Propagation》 2016年第3期138-157,共20页
Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security and process monitoring. However, their lifetime remains very limited by battery capacity. Through the use of piezoelectric e... Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security and process monitoring. However, their lifetime remains very limited by battery capacity. Through the use of piezoelectric energy harvesting techniques, ambient vibration can be captured and converted into usable electricity to create selfpowering WSN which is not limited by finite battery energy. This paper investigates analytically and experimentally the performance of a WSN powered by a Piezoelectric Energy Harvesting System (PEHS) and a material block-level modeling considering most key energy consumption of a wireless sensor node in a star topology network is proposed. By using real hardware parameters of existing components, the proposed model is used to evaluate the energetic budget of the node. The sensor node performance is evaluated regarding transmit packet size, duty cycle and the number of nodes that can be deployed. From the spectral properties of the available vibration inside two moving vehicles (automobile and train), the maximal recoverable power for each type of vehicle is estimated. Using a PEHS based on a cantilever beam optimized for low-frequency applications, 6 mW power is recovered in the case of the train while a 12.5 mW power is reached in the case of the automobile. It is observed that the sink may not operate with the recovered energy. However, the sensor node can sense and transmit data with a maximum size of 105.5 kbits when the duty cycle is 4 × 10<sup>-15</sup>. It is also achieved that the node is most effective when the measured physical phenomena vary slowly, such as the variations in temperature due to thermal inertia. Considering an optimized PEHS based on non-linear processing, it is shown that the sink can operate for 190% improvement of the recovered power. 展开更多
关键词 wsn self-powering PEHS Packet Size Duty Cycle Energy Harvesting System
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部