Heterojunction construction,especially S-scheme heterojunction,represents an efficient universal strategy to achieve high-performance photocatalytic materials.For further performance stimulation of these well-designed...Heterojunction construction,especially S-scheme heterojunction,represents an efficient universal strategy to achieve high-performance photocatalytic materials.For further performance stimulation of these well-designed heterojunctions,modulating the interfacial internal electric field(IEF)to steer dynamic charge transfer represents a promising approach.Herein,we realized the precise regulation of Fermi level(E_(F))of the oxidation semiconductor(mesoporous WO_(3-x))by tailoring the concentration of oxygen vacancies(V_(O)),maximizing the IEF intensity in Cs_(2)CuBr_(4)@WO_(3-x)(CCB@WO_(3-x))S-scheme heterojunction.The augmented IEF affords a robust driving force for directional electron delivery,leading to boosted charge separation.Hence,the developed CCB@WO_(3-x)S-scheme heterojunction demonstrated outstanding photocatalytic CO_(2)reduction performance,with the electron consumption rate(Relectron)up to 390.34μmol g^(-1)h^(-1),which is 3.28 folds higher than that of pure CCB.An in-depth analysis of the S-scheme electron transfer mode was presented via theoretical investigations,electron spin resonance(ESR),photo-irradiated Kelvin probe force microscopy(KPFM),and in-situ X-ray photoelectron spectroscopy(XPS).Finally,the CO_(2)photoconversion route was explored in detail using in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and DFT theoretical calculations.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
A self-powered solar-blind ultraviolet(UV)photodetector(PD)was successfully constructed on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction,which was fabricated by spin-coating the hydrothermally grown Bi_(2)WO_(6)onto MOCVD-...A self-powered solar-blind ultraviolet(UV)photodetector(PD)was successfully constructed on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction,which was fabricated by spin-coating the hydrothermally grown Bi_(2)WO_(6)onto MOCVD-grown Ga_(2)O_(3)film.The results show that a typical type-I heterojunction is formed at the interface of the Ga_(2)O_(3)film and clustered Bi_(2)WO_(6),which demonstrates a distinct photovoltaic effect with an open-circuit voltage of 0.18 V under the irradiation of 254 nm UV light.Moreover,the Ga_(2)O_(3)/Bi_(2)WO_(6)PD displays excellent photodetection performance with an ultra-low dark current of~6 fA,and a high light-to-dark current ratio(PDCR)of 3.5 x 10^(4)in self-powered mode(0 V),as well as a best responsivity result of 2.21 mA/W in power supply mode(5 V).Furthermore,the PD possesses a stable and fast response speed under different light intensities and voltages.At zero voltage,the PD exhibits a fast rise time of 132 ms and 162 ms,as well as a quick decay time of 69 ms and 522 ms,respectively.In general,the newly attempted Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction may become a potential candidate for the realization of self-powered and high-performance UV photodetectors.展开更多
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS...Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
通过滴涂法成功制备了Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料,利用XRD、SEM等方法进行表征和一系列光电催化测试。结果表明,Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料比纯相Fe_(2)O_(3)具有更好的催化活性,且滴涂10μL Bi_(2)WO_(6)前驱体溶液的Bi_...通过滴涂法成功制备了Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料,利用XRD、SEM等方法进行表征和一系列光电催化测试。结果表明,Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料比纯相Fe_(2)O_(3)具有更好的催化活性,且滴涂10μL Bi_(2)WO_(6)前驱体溶液的Bi_(2)WO_(6)/Fe_(2)O_(3)光阳极具有最高的光电流密度(0.15 mA·cm^(-2)@1.23 V vs.RHE),是纯相Fe_(2)O_(3)(约4.4μA·cm^(-2)@1.23 V vs.RHE)光电阳极的34倍。复合材料的形成增加了吸收光谱范围,提高了对可见光的利用率,促进了界面电荷转移,抑制了光生载流子复合,从而提高了Fe_(2)O_(3)的光电催化活性。展开更多
Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(...Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(2)S_(3)/WO_(3)S-scheme heterojunction photocatalyst obtained by depositing WO_(3)quantum dots(QDs)onto hierarchical In_(2)S_(3)microflowers.The In_(2)S_(3)/WO_(3)composite exhibits outstanding visible light absorption,with a maximum optical response of up to 600 nm.The electronic interaction and charge separation at interfaces are explored by in situ X-ray photoelectron spectroscopy(XPS)and density func-tional theory(DFT)calculations.The difference in work function causes In_(2)S_(3)to donate electrons to WO_(3)upon combination,leading to the formation of an internal electric field(IEF)at the interfaces.Due to the IEF and bent energy bands,the transfer and separation of photogenerated charge carriers follow an S-scheme pathway within In_(2)S_(3)/WO_(3).Owing to the strong redox ability,spatial charge separation and lower H 2-generation barrier of S active sites,the optimized In_(2)S_(3)/WO_(3)heterojunctions show enhanced photocatalytic hydrogen evolution of 0.39 mmol h^(-1)g^(-1),6.7 times that of pristine In_(2)S_(3).In addition,the In_(2)S_(3)/WO_(3)S-scheme heterojunctions afford a remarkable activity for photocatalytic nitrobenzene hydro-genation with nearly 98%conversion and 99%selectivity of aniline within 1 h.Our work might present new insights into developing efficient S-scheme heterojunctions for various photocatalytic applications.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(51972213)Natural Science Foundation of Shanghai(22ZR1460700).
文摘Heterojunction construction,especially S-scheme heterojunction,represents an efficient universal strategy to achieve high-performance photocatalytic materials.For further performance stimulation of these well-designed heterojunctions,modulating the interfacial internal electric field(IEF)to steer dynamic charge transfer represents a promising approach.Herein,we realized the precise regulation of Fermi level(E_(F))of the oxidation semiconductor(mesoporous WO_(3-x))by tailoring the concentration of oxygen vacancies(V_(O)),maximizing the IEF intensity in Cs_(2)CuBr_(4)@WO_(3-x)(CCB@WO_(3-x))S-scheme heterojunction.The augmented IEF affords a robust driving force for directional electron delivery,leading to boosted charge separation.Hence,the developed CCB@WO_(3-x)S-scheme heterojunction demonstrated outstanding photocatalytic CO_(2)reduction performance,with the electron consumption rate(Relectron)up to 390.34μmol g^(-1)h^(-1),which is 3.28 folds higher than that of pure CCB.An in-depth analysis of the S-scheme electron transfer mode was presented via theoretical investigations,electron spin resonance(ESR),photo-irradiated Kelvin probe force microscopy(KPFM),and in-situ X-ray photoelectron spectroscopy(XPS).Finally,the CO_(2)photoconversion route was explored in detail using in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and DFT theoretical calculations.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3605404)Natural Science Research Start up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921119,XK1060921115,and XK1060921002)+1 种基金National Natural Science Foundation of China(Grant No.62204125)China Postdoctoral Science Foundation(Grant No.2022M721689)。
文摘A self-powered solar-blind ultraviolet(UV)photodetector(PD)was successfully constructed on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction,which was fabricated by spin-coating the hydrothermally grown Bi_(2)WO_(6)onto MOCVD-grown Ga_(2)O_(3)film.The results show that a typical type-I heterojunction is formed at the interface of the Ga_(2)O_(3)film and clustered Bi_(2)WO_(6),which demonstrates a distinct photovoltaic effect with an open-circuit voltage of 0.18 V under the irradiation of 254 nm UV light.Moreover,the Ga_(2)O_(3)/Bi_(2)WO_(6)PD displays excellent photodetection performance with an ultra-low dark current of~6 fA,and a high light-to-dark current ratio(PDCR)of 3.5 x 10^(4)in self-powered mode(0 V),as well as a best responsivity result of 2.21 mA/W in power supply mode(5 V).Furthermore,the PD possesses a stable and fast response speed under different light intensities and voltages.At zero voltage,the PD exhibits a fast rise time of 132 ms and 162 ms,as well as a quick decay time of 69 ms and 522 ms,respectively.In general,the newly attempted Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction may become a potential candidate for the realization of self-powered and high-performance UV photodetectors.
基金the National Natural Science Foundation of China(No.41807213)the Hydrogeo-logical Survey Project of Huangshui River(No.DD20190331).
文摘Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.
基金The National Natural Science Foundation of China(Nos.21633013 and 22102197)CAS LICP Cooperative Fund of Collaborative Innovation Alliance for Young Scientists(HZJJ23-5).
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
文摘通过滴涂法成功制备了Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料,利用XRD、SEM等方法进行表征和一系列光电催化测试。结果表明,Bi_(2)WO_(6)/Fe_(2)O_(3)复合材料比纯相Fe_(2)O_(3)具有更好的催化活性,且滴涂10μL Bi_(2)WO_(6)前驱体溶液的Bi_(2)WO_(6)/Fe_(2)O_(3)光阳极具有最高的光电流密度(0.15 mA·cm^(-2)@1.23 V vs.RHE),是纯相Fe_(2)O_(3)(约4.4μA·cm^(-2)@1.23 V vs.RHE)光电阳极的34倍。复合材料的形成增加了吸收光谱范围,提高了对可见光的利用率,促进了界面电荷转移,抑制了光生载流子复合,从而提高了Fe_(2)O_(3)的光电催化活性。
基金funded by the Opening Project of Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention(LAP 3)(No.FDLAP21008)the Hubei Provincial Natural Science Foundation of China(No.2020CFB785)+1 种基金the Science and Tech-nology Research Project of the Education Department of Hubei Province(No.D20191703)the Project of Hubei Key Labora-tory of Biomass Fibers and Eco-dyeing&Finishing(WTU)(Nos.STRZ202219,STRZ202220).
文摘Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(2)S_(3)/WO_(3)S-scheme heterojunction photocatalyst obtained by depositing WO_(3)quantum dots(QDs)onto hierarchical In_(2)S_(3)microflowers.The In_(2)S_(3)/WO_(3)composite exhibits outstanding visible light absorption,with a maximum optical response of up to 600 nm.The electronic interaction and charge separation at interfaces are explored by in situ X-ray photoelectron spectroscopy(XPS)and density func-tional theory(DFT)calculations.The difference in work function causes In_(2)S_(3)to donate electrons to WO_(3)upon combination,leading to the formation of an internal electric field(IEF)at the interfaces.Due to the IEF and bent energy bands,the transfer and separation of photogenerated charge carriers follow an S-scheme pathway within In_(2)S_(3)/WO_(3).Owing to the strong redox ability,spatial charge separation and lower H 2-generation barrier of S active sites,the optimized In_(2)S_(3)/WO_(3)heterojunctions show enhanced photocatalytic hydrogen evolution of 0.39 mmol h^(-1)g^(-1),6.7 times that of pristine In_(2)S_(3).In addition,the In_(2)S_(3)/WO_(3)S-scheme heterojunctions afford a remarkable activity for photocatalytic nitrobenzene hydro-genation with nearly 98%conversion and 99%selectivity of aniline within 1 h.Our work might present new insights into developing efficient S-scheme heterojunctions for various photocatalytic applications.