Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT...Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synt...La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.展开更多
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A...The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.展开更多
Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepar...Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepared films with 13 layers have comparatively lower refractive index than bulk BaTiO 3, and it can support two TM and TE modes. Photoluminescence and up-conversion luminescence spectra proved the successful doping of rare earth ions.展开更多
Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis ...Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.展开更多
A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3...A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3,5-DABP as aqueous monomer and trimesoyl chloride (TMC) as organic monomer,thin film composite (TFC) nanofiltration membranes were prepared by interfacial polymerization technology.The salt rejection order of these TFC membranes is Na2SO4MgSO4MgCl2NaCl.This sequence indicates that the membranes are negatively charged.展开更多
Here we report the WO3 thin films on F-doped SnO2 conducting glass (FTO) substrates which were prepared by using dip film-drawing method. Dip film-drawing was a simple, convenient, economical method and in largescale ...Here we report the WO3 thin films on F-doped SnO2 conducting glass (FTO) substrates which were prepared by using dip film-drawing method. Dip film-drawing was a simple, convenient, economical method and in largescale to prepare photoanodes for future applications. The FTO substrates were dipped in tungstic acid solution then film-drawn included 3, 6, 9, 12 and 15 times for prepared different thicknesses of WO3 thin film photoanodes. Then the photoa no des were employed as the electrodes in photoelectrochemical property Keywords: WO3 thin films Dip film-drawing Photoelectrochemical Thicknesses Large-scale measurements, which include scan linear sweep, repeated on/off illumination cycles, electrochemical impedanee spectroscopy and incident phot on to current conversion efficiency, respectively. The results showed that the WO3 thin films dipped 9 times with 175 nm thicknesses had the best photoelectrochemical performance of 0.067 mA·cm^-2 at 1.23 V versus RHE.展开更多
As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the m...As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field ...We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(...SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscopy(SEM) and metallographic microscope.Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation.AFM photographs of octadecyl-trichloro-silane self-assembled monolayer(OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic.Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film.XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100-500 nm.The formation mechanism of the SrTiO3 film was proposed.展开更多
A novel and facile synthesis route for the manufacture of transparent and uniform self-assembled nanocrystalline Cr2O3 (nc-Cr2O3) thin films with different morphology was reported, utilizing chromium nitrate as the ...A novel and facile synthesis route for the manufacture of transparent and uniform self-assembled nanocrystalline Cr2O3 (nc-Cr2O3) thin films with different morphology was reported, utilizing chromium nitrate as the inorganic source and triblock copolymer F127 as the morphology-directing agent by the evaporation-induced assembly (EIA) method. X-ray powder diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), N2-sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the as-prepared nc-Cr2O3 thin films. The Cr2O3 thin film with different morphology was obtained by changing the relative humidity. The possible formation mechanism of the nc-Cr2O3 thin films with different morphologies was discussed.展开更多
BaTiO3 thin film has been deposited on Si(100) substrate using sol-gel process and deposited by using spin – coating technique. The BaTiO3/Si(100) structures were studied by structural and electrical characteristics....BaTiO3 thin film has been deposited on Si(100) substrate using sol-gel process and deposited by using spin – coating technique. The BaTiO3/Si(100) structures were studied by structural and electrical characteristics. The X-ray diffrac-tion of BaTiO3/Si(100) shows that the diffraction peaks become increasing sharp with increasing calcination tempera-tures indicating the enhance crystallinity of the films. Scanning electron microscopy of BaTiO3 thin films shows the crack free and uniform nature. The capacitance-voltage measurement of BaTiO3 thin film deposited on Si(100) an-nealed at 600℃ shows large frequency dispersion in the accumulation region. The current-voltage measurement of BaTiO3/Si shows the ideality factor was approaches to unity at 600℃.展开更多
BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons m...BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons microscopy and energy dispersive X-ray spectrometry. The influence of annealing temperature and annealing time on sheet resistance of the thin films was investigated. The results show that heat treatment, including annealing temperature and time, causes notable change in molar ratio of Pb to Ba, resulting in the variations of sheet resistance. The variation of electrical properties demonstrates that the surface state of the film changes from two-dimensional behavior to three-dimensional behavior with the increase of film thickness. Crack-free BaPbO3 thin films with grain size of 90 nm can be obtained by a rapid thermal annealing at 700 ℃ for 10 min. And the BaPbO3 films with a thickness of 2.5 μm has a sheet resistance of 35 Ω·-1.展开更多
SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical propert...SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1400300)the National Natural Science Foundation of China(Grant Nos.22271309,21805215,11934017,12261131499,and 11921004)+1 种基金the Beijing Natural Science Foundation(Grant No.Z200007)the Fund from the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties.New Bi-based perovskite thin films Bi(Cu_(1/2)Ti_(1/2))O_(3)–PbTiO_(3)(BCT–PT) are deposited on Pt(111)/Ti/SiO_(2)/Si substrates in the present study by the traditional sol–gel method.Their structures and related ferroelectric and fatigue characteristics are studied in-depth.The BCT–PT thin films exhibit good crystallization within the phase-pure perovskite structure,besides,they have a predominant(100) orientation together with a dense and homogeneous microstructure.The remnant polarization(2P_(r)) values at 30 μC/cm^(2) and 16 μC/cm^(2) are observed in 0.1BCT–0.9PT and 0.2BCT–0.8PT thin films,respectively.More intriguingly,although the polarization values are not so high,0.2BCT–0.8PT thin films show outstanding polarization fatigue properties,with a high switchable polarization of 93.6% of the starting values after 10^(8) cycles,indicating promising applications in ferroelectric memories.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
基金Project(50902062)supported by the National Natural Science Foundation of ChinaProject(KKZ1200927002)supported by Key Programme of Kunming University of Science and Technology,China
文摘La0.72Ca0.28MnO3 thin films were deposited on untilted and 15° tilted LaAlO_3 (100) single crystalline substrates by pulsed laser deposition. The polycrystalline targets used in the deposition process were synthesized by sol-gel and coprecipitation methods, respectively. The structure, electrical transport properties and surface morphology of the targets and films were studied. It is found that, compared with coprecipitation method, the sol-gel target has more homogeneous components and larger density and grain size, thus the higher insulator-metal transition temperature and larger temperature coefficient of resistivity. The thin film prepared by sol-gel target has a uniform grain size and higher quality. The metal-insulator transition temperature is higher and the laser induced voltage signal is larger. Preparing the target by sol-gel method can largely improve the properties of corresponding thin films in pulsed laser deposition process.
基金supported by Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)National Key Technology R&D Program(Grant No.2017YFB1401805)+1 种基金the China Postdoctoral Science Foundation(2019T120285,2018M641884)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z18235)。
文摘The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
文摘Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepared films with 13 layers have comparatively lower refractive index than bulk BaTiO 3, and it can support two TM and TE modes. Photoluminescence and up-conversion luminescence spectra proved the successful doping of rare earth ions.
基金This study was supported by the following funds:National Key R&D Program of China(No.2018YFE0207900)Program for Innovation Team of Shaanxi Province(No.2023-CXTD-17)+5 种基金Program of the National Natural Science Foundation of China(No.51835010)Key R&D Program of Guangdong Province(No.2018B090906001)Natural Science Basic Research Program of Shaanxi Province(No.2022JQ-378)China Postdoctoral Science Foundation(No.2020M683458)Fundamental Research Funds for the Central Universities(8)Youth Innovation Team of Shaanxi Universities.
文摘Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.
基金Supported by the National Natural Science Foundation of China(21076176) the Research and Development Project of Tangshan(10140201C-3)+1 种基金 the Research and Development Project of Hebei Province(07275113) the Research Fund of Tangshan Normal College
文摘A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3,5-DABP as aqueous monomer and trimesoyl chloride (TMC) as organic monomer,thin film composite (TFC) nanofiltration membranes were prepared by interfacial polymerization technology.The salt rejection order of these TFC membranes is Na2SO4MgSO4MgCl2NaCl.This sequence indicates that the membranes are negatively charged.
基金Supported by the National Natural Science Foundation of China(21522603,21477050,21401082,21503142,21671083)Six Talent Peaks Project in Jiangsu Province(XCL-025)+2 种基金and the Chinese-German Cooperation Research Project(GZ1091)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX17_1774)the Excellent Youth Foundation of Jiangsu Scientific Committee(BK20170526)
文摘Here we report the WO3 thin films on F-doped SnO2 conducting glass (FTO) substrates which were prepared by using dip film-drawing method. Dip film-drawing was a simple, convenient, economical method and in largescale to prepare photoanodes for future applications. The FTO substrates were dipped in tungstic acid solution then film-drawn included 3, 6, 9, 12 and 15 times for prepared different thicknesses of WO3 thin film photoanodes. Then the photoa no des were employed as the electrodes in photoelectrochemical property Keywords: WO3 thin films Dip film-drawing Photoelectrochemical Thicknesses Large-scale measurements, which include scan linear sweep, repeated on/off illumination cycles, electrochemical impedanee spectroscopy and incident phot on to current conversion efficiency, respectively. The results showed that the WO3 thin films dipped 9 times with 175 nm thicknesses had the best photoelectrochemical performance of 0.067 mA·cm^-2 at 1.23 V versus RHE.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10979069)the "Hundred Talent Program" of Chinese Academy of Sciences
文摘As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
基金Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0202201the National Natural Science Foundation of China under Grant Nos 61290304,11574335 and 61376016+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe 333 Project of Jiangsu province under Grant No BRA2017352
文摘We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金Funded by National Natural Science Foundation of China (No. 50672055,50872077)National Key Technology R&D Program (No. 2006BAF02A28)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscopy(SEM) and metallographic microscope.Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation.AFM photographs of octadecyl-trichloro-silane self-assembled monolayer(OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic.Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film.XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100-500 nm.The formation mechanism of the SrTiO3 film was proposed.
基金Funded by the National Natural Science Foundation of China (No. 51078078)
文摘A novel and facile synthesis route for the manufacture of transparent and uniform self-assembled nanocrystalline Cr2O3 (nc-Cr2O3) thin films with different morphology was reported, utilizing chromium nitrate as the inorganic source and triblock copolymer F127 as the morphology-directing agent by the evaporation-induced assembly (EIA) method. X-ray powder diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), N2-sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the as-prepared nc-Cr2O3 thin films. The Cr2O3 thin film with different morphology was obtained by changing the relative humidity. The possible formation mechanism of the nc-Cr2O3 thin films with different morphologies was discussed.
文摘BaTiO3 thin film has been deposited on Si(100) substrate using sol-gel process and deposited by using spin – coating technique. The BaTiO3/Si(100) structures were studied by structural and electrical characteristics. The X-ray diffrac-tion of BaTiO3/Si(100) shows that the diffraction peaks become increasing sharp with increasing calcination tempera-tures indicating the enhance crystallinity of the films. Scanning electron microscopy of BaTiO3 thin films shows the crack free and uniform nature. The capacitance-voltage measurement of BaTiO3 thin film deposited on Si(100) an-nealed at 600℃ shows large frequency dispersion in the accumulation region. The current-voltage measurement of BaTiO3/Si shows the ideality factor was approaches to unity at 600℃.
基金Project(033177) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(040140) supported by the Natural Science Foundation of South China University of Technology
文摘BaPbO3 thin films were deposited on Al2O3 substrates by sol-gel spin-coating and rapid thermal annealing. The microstructure and phase of BaPbO3 thin films were determined by X-ray diffractometry, scanning electrons microscopy and energy dispersive X-ray spectrometry. The influence of annealing temperature and annealing time on sheet resistance of the thin films was investigated. The results show that heat treatment, including annealing temperature and time, causes notable change in molar ratio of Pb to Ba, resulting in the variations of sheet resistance. The variation of electrical properties demonstrates that the surface state of the film changes from two-dimensional behavior to three-dimensional behavior with the increase of film thickness. Crack-free BaPbO3 thin films with grain size of 90 nm can be obtained by a rapid thermal annealing at 700 ℃ for 10 min. And the BaPbO3 films with a thickness of 2.5 μm has a sheet resistance of 35 Ω·-1.
基金Project supported by National Natural Science Foundation (Grant Nos 60221502 and 60223006) and Shanghai R&D Foundation for Applied Materials (Grant No 0316).
文摘SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.