期刊文献+
共找到26,212篇文章
< 1 2 250 >
每页显示 20 50 100
基于CWT和优化Swin Transformer的风电齿轮箱故障诊断方法
1
作者 周舟 陈捷 吴明明 《振动与冲击》 EI CSCD 北大核心 2024年第15期200-208,共9页
针对传统故障诊断方法在风电齿轮箱运行故障诊断应用上的不足,提出一种基于小波变换(continuous wavelet transform, CWT)和优化Swin Transformer的风电齿轮箱故障诊断方法。该方法利用小波变换将风电齿轮箱振动信号转换为时频图;使用Su... 针对传统故障诊断方法在风电齿轮箱运行故障诊断应用上的不足,提出一种基于小波变换(continuous wavelet transform, CWT)和优化Swin Transformer的风电齿轮箱故障诊断方法。该方法利用小波变换将风电齿轮箱振动信号转换为时频图;使用SuperMix数据增强算法对样本进行扩充;利用迁移学习技术将模型预训练参数用于训练和优化Swin Transformer模型;将训练完成的优化Swin Transformer模型应用于风场实际运维数据进行对比验证,分类准确率达到99.67%。验证结果表明该方法能够有效地实现风电齿轮箱故障诊断,并提高模型的识别准确率。 展开更多
关键词 风电齿轮箱 小波变换 数据增强 Swin transformer
下载PDF
A Dual Tree Complex Discrete Cosine Harmonic Wavelet Transform (ADCHWT) and Its Application to Signal/Image Denoising 被引量:3
2
作者 M. Shivamurti S. V. Narasimhan 《Journal of Signal and Information Processing》 2011年第3期218-226,共9页
A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT ha... A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT. 展开更多
关键词 ANALYTIC DISCRETE COSINE Harmonic wavelet transform ANALYTIC wavelet transform Dual TREE Complex wavelet transform DCT Shift Invariant wavelet transform wavelet transform Denoising
下载PDF
Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
3
作者 Mahmood A.Mahmood Khalaf Alsalem 《Computers, Materials & Continua》 SCIE EI 2024年第3期3431-3448,共18页
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa... Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases. 展开更多
关键词 Olive leaf diseases wavelet transform deep learning feature fusion
下载PDF
Study of the Functions of Wavelet Packet Transform (WPT) and Continues Wavelet Transform (CWT) in Recognizing the Damage Specification 被引量:5
4
作者 Mahdi Koohdaragh M. A. Loffollahi Yaghin +1 位作者 S. Sepehr F. Hosseyni 《Journal of Civil Engineering and Architecture》 2011年第9期856-859,共4页
Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of t... Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of the application of these Wavelets is their capacity to analyze the signal position in different occasions and places. However, in sites with high frequencies its resolution becomes much more difficult. Wavelet packet transform is a more advanced form of continuous wavelets and can make a perfect level by level resolution for each signal. Although very few studies have been done in the field. In order to do this, in the present study, f^st there was an attempt to do a modal analysis on the structure by the ANSYS finite elements software, then using MATLAB, the wavelet was investigated through a continuous wavelet analysis. Finally the results were displayed in 2-D location-coefficient figures. In the second form, transient-dynamic analysis was done on the structure to find out the characteristics of the damage and the wavelet packet energy rate index was suggested. The results indicate that suggested index in the second form is both practical and applicable, and also this index is sensitive to the intensity of the damage. 展开更多
关键词 wavelet packet transform continues wavelet transform dynamic analysis energy rate index.
下载PDF
Suppression of seismic random noise by deep learning combined with stationary wavelet packet transform
5
作者 Fan Hua Wang Dong-Bo +2 位作者 Zhang Yang Wang Wen-Xu Li Tao 《Applied Geophysics》 SCIE CSCD 2024年第4期740-751,880,共13页
Many traditional denoising methods,such as Gaussian fi ltering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis to... Many traditional denoising methods,such as Gaussian fi ltering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis tool.Compared with the stationary wavelet transform,it can suppress high-frequency noise while preserving more edge details.Deep learning has signifi cantly progressed in denoising applications.DnCNN,a residual network;FFDNet,an effi cient,fl exible network;U-NET,a codec network;and GAN,a generative adversative network,have better denoising effects than BM3D,the most popular conventional denoising method.Therefore,SWP_hFFDNet,a random noise attenuation network based on the stationary wavelet packet transform(SWPT)and modified FFDNet,is proposed.This network combines the advantages of SWPT,Huber norm,and FFDNet.In addition,it has three characteristics:First,SWPT is an eff ective featureextraction tool that can obtain low-and high-frequency features of different scales and frequency bands.Second,because the noise level map is the input of the network,the noise removal performance of diff erent noise levels can be improved.Third,the Huber norm can reduce the sensitivity of the network to abnormal data and enhance its robustness.The network is trained using the Adam algorithm and the BSD500 dataset,which is augmented,noised,and decomposed by SWPT.Experimental and actual data processing results show that the denoising eff ect of the proposed method is almost the same as those of BM3D,DnCNN,and FFDNet networks for low noise.However,for high noise,the proposed method is superior to the aforementioned networks. 展开更多
关键词 random noise stationary wavelet packet transform deep learning noise level map Huber norm
下载PDF
Research on the longitudinal protection of a through-type cophase traction direct power supply system based on the empirical wavelet transform
6
作者 Lu Li Zeduan Zhang +5 位作者 Wang Cai Qikang Zhuang Guihong Bi Jian Deng Shilong Chen Xiaorui Kan 《Global Energy Interconnection》 EI CSCD 2024年第2期206-216,共11页
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti... This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances. 展开更多
关键词 Through-type Cophase traction direct power supply system Traction network Empirical wavelet transform(Ewt) Longitudinal protection
下载PDF
Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy
7
作者 Lili Bai Wenhui Li +3 位作者 He Ren Feng Li TaoYan Lirong Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4513-4531,共19页
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac... Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery. 展开更多
关键词 Rotating machinery quantum theory nonlinear quantum permutation entropy Flexible Analytic wavelet transform(FAwt) feature extraction
下载PDF
Performance of Continuous Wavelet Transform over Fourier Transform in Features Resolutions
8
作者 Michael K. Appiah Sylvester K. Danuor Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期87-105,共19页
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d... This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification. 展开更多
关键词 Continuous wavelet transform (Cwt) Fast Fourier transform (FFT) Reservoir Characterization Tano Basin Seismic Data Spectral Decomposition
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
9
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier transform wavelet Packet Decomposition Time-Frequency Analysis Non-Stationary Signals
下载PDF
Comparison of GPR Random Noise Attenuation Using Autoregressive-FX Method and Tunable Quality Factor Wavelet Transform TQWT with Soft and Hard Thresholding 被引量:1
10
作者 Amin Ebrahimib Bardar Behrooz Oskooi Alireza Goudarzi 《Journal of Signal and Information Processing》 2019年第1期19-35,共17页
Ground Penetration Radar is a controlled source geophysical method which uses high frequency electromagnetic waves to study shallow layers. Resolution of this method depends on difference of electrical properties betw... Ground Penetration Radar is a controlled source geophysical method which uses high frequency electromagnetic waves to study shallow layers. Resolution of this method depends on difference of electrical properties between target and surrounding electrical medium, target geometry and used bandwidth. The wavelet transform is used extensively in signal analysis and noise attenuation. In addition, wavelet domain allows local precise descriptions of signal behavior. The Fourier coefficient represents a component for all time and therefore local events must be described by the phase characteristic which can be abolished or strengthened over a large period of time. Finally basis of Auto Regression (AR) is the fitting of an appropriate model on data, which in practice results in more information from data process. Estimation of the parameters of the regression model (AR) is very important. In order to obtain a higher-resolution spectral estimation than other models, recursive operator is a suitable tool. Generally, it is much easier to work with an Auto Regression model. Results shows that the TQWT in soft thresholding mode can attenuate random noise far better than TQWT in hard thresholding mode and Autoregressive-FX method. 展开更多
关键词 GPR Autoregressive-FX Tunable Quality Factor wavelet transform TQwt
下载PDF
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
11
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric Vibrator Noise Analysis Signal Decomposing Variational Mode Decomposition Empirical wavelet transform
下载PDF
The Second-generation Wavelet Transform and its Application in Denoising of Seismic Data 被引量:20
12
作者 曹思远 陈香朋 《Applied Geophysics》 SCIE CSCD 2005年第2期70-74,i0001,共6页
This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method u... This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm. 展开更多
关键词 wavelet transform second-generation and denoise
下载PDF
Performance of Wavelet-Transform-Domain Adaptive Equalizers 被引量:4
13
作者 吴炳洋 陈琦帆 程时昕 《Journal of Southeast University(English Edition)》 EI CAS 2002年第1期13-18,共6页
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ... In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain. 展开更多
关键词 wavelet transform domain wavelet transform domain LMS adaptive equalizer
下载PDF
Flight Flutter Modal Parameters Identification with Atmospheric Turbulence Excitation Based on Wavelet Transformation 被引量:4
14
作者 张波 史忠科 李健君 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期394-401,共8页
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters... In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity. 展开更多
关键词 flight flutter modal parameters identification atmospheric turbulence excitation wavelet transformation random decrement technique acceleration response
下载PDF
Application of fast wavelet transformation in signal processing of MEMS gyroscope 被引量:6
15
作者 吉训生 王寿荣 许宜申 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期510-513,共4页
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t... Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal. 展开更多
关键词 wavelet transformation signal processing GYROSCOPE THRESHOLD
下载PDF
A study of wavelet transforms applied for fracture identification and fracture density evaluation 被引量:3
16
作者 张晓峰 潘保芝 +1 位作者 王飞 韩雪 《Applied Geophysics》 SCIE CSCD 2011年第2期164-169,178,179,共8页
Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wave... Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent. 展开更多
关键词 wavelet transform fracture identification differential curves fracture density
下载PDF
基于SVC和wavelet-transform的图像脉冲噪声自适应新滤波器 被引量:2
17
作者 陆丽婷 朱嘉钢 《计算机应用》 CSCD 北大核心 2009年第2期477-479,共3页
利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先... 利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先的SVC滤波器有明显的改善。 展开更多
关键词 图像恢复 脉冲噪声 小波变换 支持向量分类
下载PDF
Ground roll wave suppression based on wavelet frequency division and radial trace transform 被引量:2
18
作者 王万里 杨午阳 +1 位作者 魏新建 何欣 《Applied Geophysics》 SCIE CSCD 2017年第1期96-104,190,共10页
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w... Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude. 展开更多
关键词 ground roll wave wavelet frequency division radial trace transform DENOISING
下载PDF
Wavelet transform and gradient direction based feature extraction method for off-line handwritten Tibetan letter recognition 被引量:3
19
作者 黄鹤鸣 达飞鹏 韩晓旭 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期27-31,共5页
To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan charac... To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy. 展开更多
关键词 pattern recognition wavelet transform gradient direction TIBETAN handwritten character
下载PDF
Generation of artificial earthquakes for matching target response unsmooth spectrum via wavelet package transform 被引量:2
20
作者 彭康 王泽伟 孙晶晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2612-2617,共6页
The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the ta... The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge. 展开更多
关键词 time history acceleration wavelet packet transform spectral matching peak frequency of response spectrum
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部