针对旋挖钻机钻杆振动信号具有非线性、非平稳的特点,以及多源振动耦合影响,提出了一种基于多层联合信号降噪方法,对振动信号进行降噪处理。首先,采用局域均值分解(local mean decomposition,LMD),得到一系列乘积函数(product functions...针对旋挖钻机钻杆振动信号具有非线性、非平稳的特点,以及多源振动耦合影响,提出了一种基于多层联合信号降噪方法,对振动信号进行降噪处理。首先,采用局域均值分解(local mean decomposition,LMD),得到一系列乘积函数(product functions,PF),根据计算得出的相关系数,挑选出含噪声成分最多的PF分量,舍弃残余分量,实现第一层降噪;其次,利用小波阈值降噪(wavelet threshold denoising,WTD),对挑选分量实现了第二层降噪;最后,将WTD重构信号设为奇异值分解(singular value decomposition,SVD)的前置处理单元,实现第三层降噪。基于MATLAB仿真实验与轴承数据降噪实验,分别使用EMD-SVD、LMD-SVD两种算法对目标信号进行降噪处理,LMD-WTD-SVD方法可以提高信噪比,并对比波形图与频谱图结果表明,此方法是一种更有效的降噪方法。展开更多
动车组故障预测与健康管理(PHM,Prognostics and Health Management)模型研究工作围绕动车组运维数据开展。数据是动车组PHM模型的驱动力,数据计算是动车组PHM模型的核心。文章从动车组PHM模型应用现状出发,对动车组PHM模型数据架构进...动车组故障预测与健康管理(PHM,Prognostics and Health Management)模型研究工作围绕动车组运维数据开展。数据是动车组PHM模型的驱动力,数据计算是动车组PHM模型的核心。文章从动车组PHM模型应用现状出发,对动车组PHM模型数据架构进行了优化设计,研究了动车组车载信息无线传输系统(WTDS,Wireless Transmission Device System)数据清洗及存储等关键技术,提升了PHM模型源数据处理效率。展开更多
文摘针对旋挖钻机钻杆振动信号具有非线性、非平稳的特点,以及多源振动耦合影响,提出了一种基于多层联合信号降噪方法,对振动信号进行降噪处理。首先,采用局域均值分解(local mean decomposition,LMD),得到一系列乘积函数(product functions,PF),根据计算得出的相关系数,挑选出含噪声成分最多的PF分量,舍弃残余分量,实现第一层降噪;其次,利用小波阈值降噪(wavelet threshold denoising,WTD),对挑选分量实现了第二层降噪;最后,将WTD重构信号设为奇异值分解(singular value decomposition,SVD)的前置处理单元,实现第三层降噪。基于MATLAB仿真实验与轴承数据降噪实验,分别使用EMD-SVD、LMD-SVD两种算法对目标信号进行降噪处理,LMD-WTD-SVD方法可以提高信噪比,并对比波形图与频谱图结果表明,此方法是一种更有效的降噪方法。
文摘动车组故障预测与健康管理(PHM,Prognostics and Health Management)模型研究工作围绕动车组运维数据开展。数据是动车组PHM模型的驱动力,数据计算是动车组PHM模型的核心。文章从动车组PHM模型应用现状出发,对动车组PHM模型数据架构进行了优化设计,研究了动车组车载信息无线传输系统(WTDS,Wireless Transmission Device System)数据清洗及存储等关键技术,提升了PHM模型源数据处理效率。