期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
加权全变分正则化与ADMM求解的无监督地震数据随机噪声压制方法
1
作者 王婧 陈睿 +1 位作者 马小琴 吴帮玉 《石油地球物理勘探》 EI CSCD 北大核心 2023年第4期766-779,800,共15页
噪声压制是地震数据处理中的一个至关重要的环节。近年来,随着深度学习的蓬勃发展,其在地震数据中的应用取得显著成效。在实际应用中,收集大量带标签的地震数据(无噪数据)是困难的,为此,基于无监督的深度图像先验(DIP)框架压制二维地震... 噪声压制是地震数据处理中的一个至关重要的环节。近年来,随着深度学习的蓬勃发展,其在地震数据中的应用取得显著成效。在实际应用中,收集大量带标签的地震数据(无噪数据)是困难的,为此,基于无监督的深度图像先验(DIP)框架压制二维地震数据随机噪声。首先,探索跳跃连接对网络去噪性能的影响,确定网络架构;其次,在损失函数中加入加权全变分(WTV)正则项,与传统的全变分(TV)正则项所不同的是,WTV正则项的权重系数不再是固定不变的超参数,而是与数据空间结构有关的可学习参数;最后,通过交替方向乘子法(ADMM)求解该优化问题。合成和实际数据实验表明,结合WTV正则项与ADMM的DIP方法可以在压制地震数据随机噪声的同时减少有效信号损失,且相较于DIP方法去噪稳定性更好,相邻迭代拟合信号峰值信噪比波动小,较易制定早停准则,更实用。 展开更多
关键词 地震数据去噪 无监督学习 跳跃连接 wtv正则化 ADMM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部