多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)分类方法是建立在回归模型为同方差性基础上的,而当模型出现异方差性时,会导致预测精度降低.基于此,本文提出了WVPMCD(WLS-Variable predictive model ba...多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)分类方法是建立在回归模型为同方差性基础上的,而当模型出现异方差性时,会导致预测精度降低.基于此,本文提出了WVPMCD(WLS-Variable predictive model based class discriminate,简称WVPMCD)方法,即用加权最小二乘法(WLS)代替原方法中的最小二乘法(OLS)进行参数估计,消除异方差性,从而提高了模式识别的精度.采用局部特征尺度分解(Local characteristic-scale decomposition,简称LCD)方法对滚动轴承振动信号进行分解,提取分量矩阵的奇异值组成故障特征向量作为WVPMCD的输入,并对正常状态、滚动体故障、内圈故障和外圈故障4种不同工作状态和故障类型下的滚动轴承振动信号进行分析,结果表明,在模型存在异方差性时,WVPMCD比原VPMCD具有更好的分类效果和识别率.展开更多
为了更准确地对液压泵进行故障诊断,提出了基于WVPMCD(WLS-Variable predictive mode based class discriminate,WVPMCD)和层次模糊熵(hierarchical fuzzy entropy,HFE)的故障诊断方法;由于液压泵振动信号比较复杂,基于变量预测模型的...为了更准确地对液压泵进行故障诊断,提出了基于WVPMCD(WLS-Variable predictive mode based class discriminate,WVPMCD)和层次模糊熵(hierarchical fuzzy entropy,HFE)的故障诊断方法;由于液压泵振动信号比较复杂,基于变量预测模型的模式识别(variable predictive mode based class discriminate,VPMCD)方法在对模型参数进行估计时会出现异方差的现象,从而导致参数估计出现病态,估计所得参数不稳定,从而降低预测精度;WVPMCD作为VPMCD的改进,采用更先进的加权最小二乘参数估计法代替最小二乘参数估计法,消除异方差的影响,提高参数估计的精度,进而提高液压泵故障诊断准确率;此外,在层次熵(HierarchicalEntropy,HE)的基础上提出了层次模糊熵的概念,模糊熵作为样本熵的改进,在衡量时间序列复杂度上并比样本熵更优越;运用WVPMCD和层次模糊熵对液压泵进行故障诊断,实验结果验证了该方法的有效性。展开更多
文摘多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)分类方法是建立在回归模型为同方差性基础上的,而当模型出现异方差性时,会导致预测精度降低.基于此,本文提出了WVPMCD(WLS-Variable predictive model based class discriminate,简称WVPMCD)方法,即用加权最小二乘法(WLS)代替原方法中的最小二乘法(OLS)进行参数估计,消除异方差性,从而提高了模式识别的精度.采用局部特征尺度分解(Local characteristic-scale decomposition,简称LCD)方法对滚动轴承振动信号进行分解,提取分量矩阵的奇异值组成故障特征向量作为WVPMCD的输入,并对正常状态、滚动体故障、内圈故障和外圈故障4种不同工作状态和故障类型下的滚动轴承振动信号进行分析,结果表明,在模型存在异方差性时,WVPMCD比原VPMCD具有更好的分类效果和识别率.
文摘为了更准确地对液压泵进行故障诊断,提出了基于WVPMCD(WLS-Variable predictive mode based class discriminate,WVPMCD)和层次模糊熵(hierarchical fuzzy entropy,HFE)的故障诊断方法;由于液压泵振动信号比较复杂,基于变量预测模型的模式识别(variable predictive mode based class discriminate,VPMCD)方法在对模型参数进行估计时会出现异方差的现象,从而导致参数估计出现病态,估计所得参数不稳定,从而降低预测精度;WVPMCD作为VPMCD的改进,采用更先进的加权最小二乘参数估计法代替最小二乘参数估计法,消除异方差的影响,提高参数估计的精度,进而提高液压泵故障诊断准确率;此外,在层次熵(HierarchicalEntropy,HE)的基础上提出了层次模糊熵的概念,模糊熵作为样本熵的改进,在衡量时间序列复杂度上并比样本熵更优越;运用WVPMCD和层次模糊熵对液压泵进行故障诊断,实验结果验证了该方法的有效性。