土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文...土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文介绍了比利时鲁汶大学研发的分布式土壤侵蚀模型WaTEM/SEDEM(Water and Tillage Erosion Model and Sediment Delivery Model)模型,分别从WaTEM/SEDEM模型的产生、结构、国内外应用进行了系统阐述,并在已有的应用研究基础上,总结了该模型的优缺点,展望其应用前景。展开更多
Soil loss by water erosion is one of the main threats to soil health and food production in intensively used agricultural areas.To assess its significance to overall sediment production,we applied the Water and Tillag...Soil loss by water erosion is one of the main threats to soil health and food production in intensively used agricultural areas.To assess its significance to overall sediment production,we applied the Water and Tillage Erosion Model/Sediment Delivery model(WaTEM/SEDEM)to the Luoyugou catchment,a sub-catchment of the Yellow River Basin within the Chinese Loess Plateau.WaTEM/SEDEM considers rill and interrill erosion and deposition rates to calculate the sediment yield rates leaving the catchment.Ter-races were established in the 1990s to reduce soil loss in this area,but no soil erosion modeling has been published regarding the effect of this mitigation measure.Therefore,we applied 1000 Monte Carlo simulations of the WaTEM/SEDEM,and the modeled average soil loss by rill and interrill erosion for 2020 was 12.2±0.5 t ha^(-1)yr^(-1),with a sediment yield at the outlet of 53,207.8±11,244.1 t yr^(-1).The results indicated that the terracing reduced gross soil loss rates(from 51.8t ha^(-1)yr^(-1)in 1986 to 12.2±0.5 t ha^(-1)yr^(-1)in 2020),while land cover changes,mainly the conversion of forests and grassland,partly coun-teracted the mitigation(combined effect:76%reduction).Modeled sediment loads by rill and interrill erosion accounted for 22.8%of the total long-term sediment production recorded by flow discharge measurements.Other processes not considered by the model,such as landslides,gully erosion,riverbank erosion,and sediment production by construction,seem to predominantly influence the overall sedi-ment yield.Considering years with baseline sediment production only,the measured and modeled sediment yields compared favorably,indicating that the latter processes primarily contribute during extreme events.展开更多
Accelerated soil erosion is a major threat to soil,and there are great variations in the rate of soil erosion over time due to natural and human-induced factors.The temperate forest zone of Russia is character-ized by...Accelerated soil erosion is a major threat to soil,and there are great variations in the rate of soil erosion over time due to natural and human-induced factors.The temperate forest zone of Russia is character-ized by complex stages of land-use history(i.e.active urbanization,agricultural development,land abandonment,etc.).We have for the first time estimated the rates of soil erosion by the WaTEM/SEDEM model(rainfall erosion)and by a regional model(snowmelt erosion)over the past 250 years(from 1780 to 2019)for a 100-km2 study site in the Moscow region of Russia.The calculations were made on the basis of a detailed historical reconstruction of the following factors:the location of the arable land,crop rotation,the rain erosivity factor,and the maximum snow water equivalent.The area of arable land has decreased more than 3.5-fold over the past 250 years.At the end of the 20th century,the rates of gross erosion had declined more than 5.5-fold(from 28×10^(3) to 5×10^(3) t·ha^(-1)yr^(-1))in comparison with the end of the 18th century.Changes in the boundaries of arable land and also the relief features had led to a significant intra-slope accumulation of sediments.As a result of sediment redeposition within the arable land,the variation in net soil erosion was significantly lower than the variation in gross soil erosion.The changes in arable land area and in crop composition are the factors that have to the greatest extent determined the changes in soil erosion in this territory.展开更多
文摘土壤侵蚀产沙模型是开展水土保持研究的重要工具。土壤侵蚀物理模型除能够模拟和预测土壤侵蚀沉积的空间分布外,其可移植性功能较强,因此得到了很多研究者的青睐,但大多数物理模型运行时需要的参数较多,因而限制了模型应用和推广。本文介绍了比利时鲁汶大学研发的分布式土壤侵蚀模型WaTEM/SEDEM(Water and Tillage Erosion Model and Sediment Delivery Model)模型,分别从WaTEM/SEDEM模型的产生、结构、国内外应用进行了系统阐述,并在已有的应用研究基础上,总结了该模型的优缺点,展望其应用前景。
文摘Soil loss by water erosion is one of the main threats to soil health and food production in intensively used agricultural areas.To assess its significance to overall sediment production,we applied the Water and Tillage Erosion Model/Sediment Delivery model(WaTEM/SEDEM)to the Luoyugou catchment,a sub-catchment of the Yellow River Basin within the Chinese Loess Plateau.WaTEM/SEDEM considers rill and interrill erosion and deposition rates to calculate the sediment yield rates leaving the catchment.Ter-races were established in the 1990s to reduce soil loss in this area,but no soil erosion modeling has been published regarding the effect of this mitigation measure.Therefore,we applied 1000 Monte Carlo simulations of the WaTEM/SEDEM,and the modeled average soil loss by rill and interrill erosion for 2020 was 12.2±0.5 t ha^(-1)yr^(-1),with a sediment yield at the outlet of 53,207.8±11,244.1 t yr^(-1).The results indicated that the terracing reduced gross soil loss rates(from 51.8t ha^(-1)yr^(-1)in 1986 to 12.2±0.5 t ha^(-1)yr^(-1)in 2020),while land cover changes,mainly the conversion of forests and grassland,partly coun-teracted the mitigation(combined effect:76%reduction).Modeled sediment loads by rill and interrill erosion accounted for 22.8%of the total long-term sediment production recorded by flow discharge measurements.Other processes not considered by the model,such as landslides,gully erosion,riverbank erosion,and sediment production by construction,seem to predominantly influence the overall sedi-ment yield.Considering years with baseline sediment production only,the measured and modeled sediment yields compared favorably,indicating that the latter processes primarily contribute during extreme events.
基金This research was supported by the Russian Foundation for Basic Research(RFBR)within scientific project N218-35-20011.
文摘Accelerated soil erosion is a major threat to soil,and there are great variations in the rate of soil erosion over time due to natural and human-induced factors.The temperate forest zone of Russia is character-ized by complex stages of land-use history(i.e.active urbanization,agricultural development,land abandonment,etc.).We have for the first time estimated the rates of soil erosion by the WaTEM/SEDEM model(rainfall erosion)and by a regional model(snowmelt erosion)over the past 250 years(from 1780 to 2019)for a 100-km2 study site in the Moscow region of Russia.The calculations were made on the basis of a detailed historical reconstruction of the following factors:the location of the arable land,crop rotation,the rain erosivity factor,and the maximum snow water equivalent.The area of arable land has decreased more than 3.5-fold over the past 250 years.At the end of the 20th century,the rates of gross erosion had declined more than 5.5-fold(from 28×10^(3) to 5×10^(3) t·ha^(-1)yr^(-1))in comparison with the end of the 18th century.Changes in the boundaries of arable land and also the relief features had led to a significant intra-slope accumulation of sediments.As a result of sediment redeposition within the arable land,the variation in net soil erosion was significantly lower than the variation in gross soil erosion.The changes in arable land area and in crop composition are the factors that have to the greatest extent determined the changes in soil erosion in this territory.