期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Phonon resonance modulation in weak van der Waals heterostructures:Controlling thermal transport in graphene-silicon nanoparticle systems
1
作者 李毅 刘一浓 胡世谦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期96-102,共7页
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf... The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications. 展开更多
关键词 thermal conductivity molecular dynamics phonon resonance van der waals interaction graphene-silicon nanoparticle heterostructure
下载PDF
InSe-Te van der Waals heterostructures for current rectification and photodetection
2
作者 王昊 冼国裕 +5 位作者 刘丽 刘轩冶 郭辉 鲍丽宏 杨海涛 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期415-420,共6页
As the basis of modern electronics and optoelectronics,high-performance,multi-functional p-n junctions have manifested and occupied an important position.However,the performance of the silicon-based p-n junctions decl... As the basis of modern electronics and optoelectronics,high-performance,multi-functional p-n junctions have manifested and occupied an important position.However,the performance of the silicon-based p-n junctions declines gradually as the thickness approaches to few nanometers.The heterojunction constructed by two-dimensional(2D)materials can significantly improve the device performance compared with traditional technologies.Here,we report the In Se-Te type-II van der Waals heterostructures with rectification ratio up to 1.56×10^(7) at drain-source voltage of±2 V.The p-n junction exhibits a photovoltaic and photoelectric effect under different laser wavelengths and densities and has high photoresponsivity and detectivity under low irradiated light power.Moreover,the heterojunction has stable photo/dark current states and good photoelectric switching characteristics.Such high-performance heterostructured device based on 2D materials provides a new way for futural electronic and optoelectronic devices. 展开更多
关键词 indium selenium TELLURIUM van der waals heterostructure transport PHOTODETECTION
下载PDF
Fabrication and applications of van der Waals heterostructures
3
作者 Junlei Qi Zongxiao Wu +6 位作者 Wenbin Wang Kai Bao Lingzhi Wang Jingkun Wu Chengxuan Ke Yue Xu Qiyuan He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期149-169,共21页
Van der Waals heterostructures(vdWHs) are showing considerable potential in both fundamental exploration and practical applications. Built upon the synthetic successes of(two-dimensional) 2D materials, several synthet... Van der Waals heterostructures(vdWHs) are showing considerable potential in both fundamental exploration and practical applications. Built upon the synthetic successes of(two-dimensional) 2D materials, several synthetic strategies of vdWHs have been developed,allowing the convenient fabrication of diverse vdWHs with decent controllability, quality, and scalability. This review first summarizes the current state of the art in synthetic strategies of vdWHs, including physical combination, deposition, solvothermal synthesis, and synchronous evolution. Then three major applications and their representative vdWH devices have been reviewed, including electronics(tunneling field effect transistors and 2D contact),optoelectronics(photodetector), and energy conversion(electrocatalysts and metal ion batteries), to unveil the potentials of vdWHs in practical applications and provide the general design principles of functional vdWHs for different applications. Besides, moiré superlattices based on vdWHs are discussed to showcase the importance of vdWHs as a platform for novel condensed matter physics. Finally, the crucial challenges towards ideal vdWHs with high performance are discussed, and the outlook for future development is presented. By the systematical integration of synthetic strategies and applications, we hope this review can further light up the rational designs of vdWHs for emerging applications. 展开更多
关键词 2D materials van der waals heterostructures gas-phase deposition solvothermal synthesis synchronous evolution
下载PDF
Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity,durability and storage stability toward oxygen reduction reaction
4
作者 Ruiqi Cheng Kaiqi Li +5 位作者 Huanxin Li Tianshuo Zhao Yibo Wang Qingyue Xue Jiao Zhang Chaopeng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期103-111,I0003,共10页
Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in def... Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction(ORR)electrocatalysts in metal-air batteries.However,the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage,leading to rapid degradation of activity.Herein,we design a van der Waals heterostructure comprised of vitamin C(VC)and defective carbon(DC)to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst.The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation,thus significantly enhancing the electrochemical durability and storage anti-aging performance.Moreover,the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR.These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations.It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up,and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent.Furthermore,the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance. 展开更多
关键词 Van der waals heterostructure Oxygen reduction reaction Stability Scalable production Aluminum-air battery
下载PDF
Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures
5
作者 Qiang Liu Wei Xu +7 位作者 Xiaoxi Li Tongyao Zhang Chengbing Qin Fang Luo Zhihong Zhu Shiqiao Qin Mengjian Zhu Kostya S Novoselov 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期328-338,共11页
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g... Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators. 展开更多
关键词 suspended graphene ultrafast light emitter van der waals heterostructures thermal radiation electron–phonon interaction
下载PDF
Supplementary Materials: Ultrafast charge transfer in dual graphene-WS_2 van der Waals quadrilayer heterostructures 被引量:3
6
作者 宋宗鹏 朱海鸥 +2 位作者 史文涛 孙大林 阮双琛 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期73-75,共3页
1. The transient absorption spectra of the WS2 monolayer sample.In the measurement of the transient absorption spectra of the WS2 monolayer sample, A 400-nm (3.1eV) pump pulse with a peak fluence of about 10μJ/cm2exc... 1. The transient absorption spectra of the WS2 monolayer sample.In the measurement of the transient absorption spectra of the WS2 monolayer sample, A 400-nm (3.1eV) pump pulse with a peak fluence of about 10μJ/cm2excites the electrons from the valence band into the conduction band,the 展开更多
关键词 WS Supplementary Materials Ultrafast charge transfer in dual graphene-WS2 van der waals quadrilayer heterostructures
下载PDF
Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain 被引量:1
7
作者 谭兴毅 刘利利 任达华 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期393-398,共6页
oscale devices.In the present work,we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calcul... oscale devices.In the present work,we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory(DFT).The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a[1,,0.6]V/A range,while it is a direct semiconductor in a[0.5,0.2]V/A range,and it is an indirect semiconduc-tor in a[0.3,1.0]V/A range.Interestingly,the band alignment of germanane/antimonene vdW heterostructure appears astype-II feature both in a[0.5,0.1]range and in a[0.3,1]V/A range,while it shows the type-I character at 0.2 V/A.In ad-dition,we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of[[5%,,3%]and in an in-plane biaxial strain range of[3%,5%],while it exhibits a direct semiconductor character in an in-plane biaxial strain range of[2%,2%].Furthermore,the band alignment of the germanane/antimonene vdW heterostructure changes from type-II to type-I at an in-plane biaxial strain of 3%.The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices. 展开更多
关键词 germanane/antimonene vdW heterostructure electronic structures external electric field STRAIN first-principles calculations
下载PDF
Epitaxial lift-off of ferromagnetic (Ga,Mn) As nanoflakes for van der Waals heterostructures
8
作者 Gang Xiang 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期1-2,共2页
The recent discovery of two-dimensional (2D) van der Waals (vdWs) ferromagnetic crystals provides an ideal platform for fundamental understanding of 2D magnetism, as well as the applications of low-power spintronic de... The recent discovery of two-dimensional (2D) van der Waals (vdWs) ferromagnetic crystals provides an ideal platform for fundamental understanding of 2D magnetism, as well as the applications of low-power spintronic devices. The advances of vdWs heterostructures can couple the quasiparticle interaction between the 2D ferromagnetic material and others with engineered strain, chemistry, optical and electrical properties, providing an additional route to realize conceptual quantum phenomena and novel device functionalities. 展开更多
关键词 FERROMAGNETIC (Ga Mn) waals heterostructures two-dimensional (2D)
下载PDF
Observation of magnetoresistance in CrI_(3)/graphene van der Waals heterostructures
9
作者 牛宇婷 鲁晓 +1 位作者 石钟太 彭波 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期27-31,共5页
Two-dimensional ferromagnetic van der Waals(2D vdW)heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic ... Two-dimensional ferromagnetic van der Waals(2D vdW)heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials,and for manipulating spin degree of freedom at the limit of few atomic layers,which empower next-generation spintronic and memory devices.However,to date,the electronic properties of 2D ferromagnetic heterostructures still remain elusive.Here,we report an unambiguous magnetoresistance behavior in CrI_(3)/graphene heterostructures,with a maximum magnetoresistance ratio of 2.8%.The magnetoresistance increases with increasing magnetic field,which leads to decreasing carrier densities through Lorentz force,and decreases with the increase of the bias voltage.This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices. 展开更多
关键词 two-dimensional ferromagnetic van der waals heterostructure MAGNETORESISTANCE
下载PDF
Ultrafast charge transfer in dual graphene-WS_2 van der Waals quadrilayer heterostructures
10
作者 宋宗鹏 朱海鸥 +2 位作者 史文涛 孙大林 阮双琛 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期69-72,共4页
Using dual graphene–WS2 quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS2 to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively... Using dual graphene–WS2 quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS2 to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively affect the interlayer electron transfer. This effect illustrates that the charge transfer in such van der Waals heterostructures may be controlled by an externally applied electric field for promising applications in photoelectric devices. 展开更多
关键词 WS Ultrafast charge transfer in dual graphene-WS2 van der waals quadrilayer heterostructures der
下载PDF
Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe_(3)GeTe_(2) van der Waals heterostructures
11
作者 苏秀崖 秦河林 +2 位作者 严忠波 钟定永 郭东辉 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期488-496,共9页
Recently, two-dimensional van der Waals(vd W) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polariz... Recently, two-dimensional van der Waals(vd W) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polarized electronic structures of antimonene/Fe_(3)GeTe_(2)vdW heterostructures were investigated through the first-principles calculations. Owing to the magnetic proximity effect, the spin splitting appears at the conduction-band minimum(CBM) and the valence-band maximum(VBM) of the antimonene. A low-energy effective Hamiltonian was proposed to depict the spin splitting. It was found that the spin splitting can be modulated by means of applying an external electric field, changing interlayer distance or changing stacking configuration. The spin splitting energy at the CBM monotonously increases as the external electric field changes from-5 V/nm to 5 V/nm, while the spin splitting energy at the VBM almost remains the same. Meanwhile,as the interlayer distance increases, the spin splitting energies at the CBM and VBM both decrease. The different stacking configurations can also induce different spin splitting energies at the CBM and VBM. Our work demonstrates that the spin splitting of antimonene in this heterostructure is not singly dependent on the nearest Sb–Fe distance, which indicates that magnetic proximity effect in heterostructures may be modulated by multiple factors, such as hybridization of electronic states and the local electronic environment. The results enrich the fundamental understanding of the magnetic proximity effect in two-dimensional vdW heterostructures. 展开更多
关键词 first-principles calculations antimonene/Fe_(3)GeTe_(2)vdW heterostructures magnetic proximity effect spin splitting
下载PDF
GaSe/ZnS异质结的结构和界面性质的第一性原理研究
12
作者 鲍爱达 马永强 郭鑫 《人工晶体学报》 CAS 北大核心 2024年第4期669-675,共7页
本文设计了一种GaSe/ZnS范德瓦耳斯异质结构(vdWH),并用第一性原理计算系统地分析了该异质结构的几何、电子、输运性质。通过结合能、声子谱、从头算分子动力学(AIMD)模拟验证了所构建GaSe/ZnS范德瓦耳斯异质结构的稳定性。详细计算了Ga... 本文设计了一种GaSe/ZnS范德瓦耳斯异质结构(vdWH),并用第一性原理计算系统地分析了该异质结构的几何、电子、输运性质。通过结合能、声子谱、从头算分子动力学(AIMD)模拟验证了所构建GaSe/ZnS范德瓦耳斯异质结构的稳定性。详细计算了GaSe/ZnS vdWH界面性质中的平面平均电子密度差和平均静电势。结果表明,GaSe/ZnS vdWH是一种直接带隙为2.19 eV,载流子迁移率较高的异质结构。其中,沿x方向的电子迁移率可达1394.63 cm^(2)·V^(-1)·s^(-1),而沿y方向的电子迁移率可达1913.18 cm^(2)·V^(-1)·s^(-1),性能优异,有望应用于电子纳米器件。 展开更多
关键词 第一性原理 密度泛函理论 GaSe/ZnS范德瓦耳斯异质结构 声子色散谱 载流子迁移率
下载PDF
基于拓扑/二维量子材料的自旋电子器件
13
作者 江龙兴 李庆超 +5 位作者 张旭 李京峰 张静 陈祖信 曾敏 吴昊 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期69-81,共13页
拓扑材料和二维材料等新型量子材料,为自旋电子器件的研究与发展提供了新契机.这些量子材料不但有助于提高电荷-自旋转换效率及提供高质量异质结界面,从而改善器件表现,更由于它们丰富的相互作用和耦合关系,能提供新奇物理现象和新的物... 拓扑材料和二维材料等新型量子材料,为自旋电子器件的研究与发展提供了新契机.这些量子材料不但有助于提高电荷-自旋转换效率及提供高质量异质结界面,从而改善器件表现,更由于它们丰富的相互作用和耦合关系,能提供新奇物理现象和新的物性调控机制,在自旋电子器件方面具有潜在的应用价值.拓扑材料和二维材料,尤其是层状拓扑材料、二维磁性材料以及它们组成的异质结的相关研究,取得了丰硕的成果,兼顾了启发性与及时的实用性.本文将综述这些新型量子材料的近期研究成果:首先重点介绍拓扑材料在自旋轨道力矩器件中实现的突破;其次着重总结二维磁性材料的特性及其在自旋电子器件中的应用;最后将进一步讨论由拓扑材料/二维磁性材料组成的全范德瓦耳斯异质结的研究进展. 展开更多
关键词 自旋电子器件 拓扑材料 二维材料 全范德瓦耳斯异质结
下载PDF
光伏模块驱动的基于范德华异质结构的热离子制冷器的性能评估
14
作者 鹿振 黄跃武 《Journal of Donghua University(English Edition)》 CAS 2024年第2期146-155,共10页
为了开发高效的太阳能冷却技术,建立了一个由光伏(photovoltaic,PV)模块和基于范德华异质结构(van der Waals heterostructure,vdWH)的热离子制冷器(thermionic refrigerator,TIR)组成的新型耦合系统。在充分考虑内部和外部的不可逆因... 为了开发高效的太阳能冷却技术,建立了一个由光伏(photovoltaic,PV)模块和基于范德华异质结构(van der Waals heterostructure,vdWH)的热离子制冷器(thermionic refrigerator,TIR)组成的新型耦合系统。在充分考虑内部和外部的不可逆因素的情况下,建立了耦合系统的理论模型,推导了关键性能指标的数学表达式。在此基础上,研究了耦合系统的一般性能特征,并确定了允许系统运行的电压区域。根据计算,最大制冷量和最大性能系数(coefficient of performance,COP)分别为75.88 W和0.49。此外,还进行了灵敏度分析,以得出关键参数对整体性能影响的规律和大小,包括太阳辐照度、有效肖特基势垒高度、层间热阻、外部热阻、热泄漏热阻和热库温度。所得结果可能有助于实际耦合系统的设计和运行。 展开更多
关键词 光伏(PV)模块 热离子制冷器(TIR) 范德华异质结构(vdWH) 耦合特性 灵敏度分析
下载PDF
Improving the electrical performances of InSe transistors by interface engineering
15
作者 曹天俊 郝松 +5 位作者 吴晨晨 潘晨 戴玉頔 程斌 梁世军 缪峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期153-158,共6页
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder... InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications. 展开更多
关键词 two-dimensional materials INSE van der waals heterostructure electrical performances charge density difference
下载PDF
Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
16
作者 Yulun Liu Yaojie Zhu +6 位作者 Zuowei Yan Ruixue Bai Xilin Zhang Yanbo Ren Xiaoyu Cheng Hui Ma Chongyun Jiang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第2期41-67,共27页
Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides of... Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices. 展开更多
关键词 excitonic devices van der waals heterostructures transition metal dichalcogenides interlayer excitons valley-Hall effect OPTOELECTRONICS
原文传递
Electronic property and topological phase transition in a graphene/CoBr_(2) heterostructure
17
作者 秦元秀 李胜世 +1 位作者 纪维霄 张昌文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期498-505,共8页
Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphe... Recently,significant experimental advancements in achieving topological phases have been reported in van der Waals(vdW)heterostructures involving graphene.Here,using first-principles calculations,we investigate graphene/CoBr_(2)(Gr/CoBr_(2))heterostructures and find that an enhancement of in-plane magnetic anisotropy(IMA)energy in monolayer CoBr_(2) can be accomplished by reducing the interlayer distance of the vdW heterostructures.In addition,we clarify that the enhancement of IMA energy primarily results from two factors:one is the weakness of the Co-d_(xy) and Co-d_(x^(2)-y^(2)) orbital hybridization and the other is the augmentation of the Co-d_(yz) and Co-d_(z)2 orbital hybridization.Meanwhile,calculation results suggest that the Kosterlitz–Thouless phase transition temperature(TKT)of a 2D XY magnet Gr/CoBr_(2)(23.8 K)is higher than that of a 2D XY monolayer CoBr_(2)(1.35 K).By decreasing the interlayer distances,the proximity effect is more pronounced and band splitting appears.Moreover,by taking into account spin–orbit coupling,a band gap of approximately 14.3 meV and the quantum anomalous Hall effect(QAHE)are attained by decreasing the interlayer distance by 1.0 A.Inspired by the above conclusions,we design a topological field transistor device model.Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials,providing a pathway for the development of new low-power spintronic devices. 展开更多
关键词 van der waals heterostructure in-plane magnetic anisotropy energy quantum anomalous Hall effect
下载PDF
Field induced Chern insulating states in twisted monolayer–bilayer graphene
18
作者 王政文 韩英卓 +3 位作者 Kenji Watanabe Takashi Taniguchi 姜宇航 毛金海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期69-73,共5页
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor... Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures. 展开更多
关键词 Chern insulators strong correlation effects two-dimensional van der waals heterostructure density-tuned scanning tunneling microscopy(DT-STM)
下载PDF
石墨烯/钼基二硫族化合物范德华异质结光电探测器的研究进展
19
作者 张鑫华 刘伟迪 +2 位作者 龚佑品 刘庆丰 陈志刚 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第3期439-457,共19页
石墨烯因其高载流子迁移率和宽光谱吸收范围而广泛应用于光电探测。然而,其低光吸收率导致的高暗电流严重限制了它的光电探测性能。钼基二硫族化合物(MoX_(2),X=S、Se和Te)具有高的吸收系数,能够弥补石墨烯基光电探测器中暗电流较高的劣... 石墨烯因其高载流子迁移率和宽光谱吸收范围而广泛应用于光电探测。然而,其低光吸收率导致的高暗电流严重限制了它的光电探测性能。钼基二硫族化合物(MoX_(2),X=S、Se和Te)具有高的吸收系数,能够弥补石墨烯基光电探测器中暗电流较高的劣势,因此基于石墨烯/MoX_(2)范德华异质结的光电探测器能够表现出优异的光电子特性。本综述首先回顾了光电探测器的工作原理、性能指标和结构。之后,从材料基础的角度突出了石墨烯/MoX_(2)范德华异质结光电探测器的重要性。接着,总结了石墨烯/MoX_(2)范德华异质结光电探测器的制备方法和性能增强策略。最后,强调了这类异质结光电探测器当前面临的挑战及未来的发展方向。本综述将为这类高性能范德华异质结光电探测器的设计提供一定的指导和参考。 展开更多
关键词 石墨烯 钼基二硫族化合物 异质结 光电探测器 范德华
下载PDF
Flower-like CuS/γ-Fe_(2)O_(3) van der Waals heterostructures with highefficient electromagnetic wave absorption
20
作者 Na Lu Jingshen Xu +1 位作者 Mengwei Yuan Genban Sun 《Nano Research》 SCIE EI CSCD 2024年第4期3324-3333,共10页
The escalating electromagnetic(EM)pollution issues and the demand to elevate military stealth technology make it imperative to develop cost-effective and high-performance electromagnetic wave(EMW)absorbing materials.I... The escalating electromagnetic(EM)pollution issues and the demand to elevate military stealth technology make it imperative to develop cost-effective and high-performance electromagnetic wave(EMW)absorbing materials.In this paper,the flower-like CuS/γ-Fe_(2)O_(3) van der Waals(vdW)heterostructures have been synthesized via a facile two-step solvothermal approach.The flower-like CuS skeleton increases the attenuation path of EMW while reducing the material density.Different contents ofγ-Fe_(2)O_(3) nanoparticles anchor between the flower-like CuS nanosheets to constitute a heterogeneous structure,which enables dielectric and magnetic loss synergistically to optimize impedance matching and remarkably improve the EMW absorption performance.The minimum reflection loss(RLmin)is-49.36 dB with a thickness of only 1.6 mm and the effective absorption bandwidth(EAB)reaches 4.64 GHz(13.36–18 GHz).By adjusting the thickness of the absorber,the EAB can cover 96%of the GHz band.Notably,the superior absorption of-61.53 dB at middle frequency band can be obtained by adjusting the amount of Fe_(2)O_(3) addition.In this study,the adjustment of EM parameters and the optimization of impedance matching have been achieved by constructing a novel vdW heterogeneous structure,which provides fresh ideas and references for the design of high-performance EMW absorbing materials. 展开更多
关键词 flower-like CuS γ-Fe_(2)O_(3) van der waals heterostructures impedance matching electromagnetic wave absorption
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部