Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for g...Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for geochemical, petrographic features and hydrocarbon potential as a conventional energy resource. Various petrographic and geochemical techniques were applied. Oil shale resource potential is evaluated for cooling and heating Sal village houses. Geothermal heat pumps, as renewable energy resource in the study area, were simulated for comparison purposes. Results show that Calcite is the main mineral component of oil shale. Magnesite, Ferrisilicate and Zaherite are exhibited in the studied samples. Other trace elements of Zinc, Cobalt and Molybdenum were presented, too. Calcium oxide of 41.01% and Silicon oxide of 12.4% are the main oxides reflected in this oil shale. Petrographic features of the analyzed oil shale found that the primary mineral constituent is micritic calcite, while the secondary minerals include carbonate mud and opaque minerals. Furthermore, it’s found that total organic carbon averages 3.33% while the total carbon content averages 20.6%. ModerateTOCvalues suggest that Wadi Al-Shallala oil shale has a good source rock potential. Even though nitrogen and sulfur are of low contents in Wadi Al-Shallala oil shale, direct combustion of the reserve for electricity generating will increase CO2 emissions by 2.71 Million m3. Two systems were simulated to cover Sal village cooling and heating demands. The conventional system is compared with geothermal heat pumps. Geothermal heat pumps are found to save 60% of electricity consumption in heating and 50% in cooling systems. The environmental benefits for geothermal system implementation will be a reduction in energy consumption as electricity. The savings in fuel oil will be about 9.35 Million barrels. While the reduction of CO2 emissions will drop to 1.5 Million m3. Results suggest that geothermal heat pumps are the best for satisfying cooling and heating needs in Sal village near Wadi Al-Shallala.展开更多
In the south Eastern Desert of Egypt,two contrasting types of magmatism(mafic and felsic) are recorded in the Wadi Kalalat area,and form the Gabal El Motaghiarat and Gabal Batuga intrusions,respectively.The two intrus...In the south Eastern Desert of Egypt,two contrasting types of magmatism(mafic and felsic) are recorded in the Wadi Kalalat area,and form the Gabal El Motaghiarat and Gabal Batuga intrusions,respectively.The two intrusions post-dates ophiolitic and arc associations represented by serpentinite and metagabbro-diorite,respectively.The mafic intrusion has a basal ultramafic member represented by fresh peridotite,which is followed upward by olivine gabbro and anorthositic or leucogabbro.This mafic intrusion pertains to the Alaskan-type mafic-ultramafic intrusions in the Arabian-Nubian Shield(ANS)being of tholeiitic nature and emplaced in a typical arc setting.On the other hand,the Gabal Batuga intrusion comprises three varieties of fresh A-type granites of high K-calc alkaline nature,which is peraluminous and garnetbearing in parts.A narrow thermal aureole in the olivine gabbro of the mafic intrusion was developed due to the intrusion of the Batuga granites.This results in the development of a hornfelsic melagabbro variety in which the composition changed from tholeiitic to a calc-alkaline composition due to the addition of S_(i)O_(2),Al_(2)O_(3),alkalis,lithosphile elements(LILEs) such as Rb(70 ppm) and Y(28 ppm) from the felsic intrusion.Outside the thermal aureole,Rb amounts 2-8 ppm and Y lies in the range <2-6ppm.It is believed that the Gabal Batuga felsic intrusion started to emplace during the waning stage of an arc system,with transition from the pre-collisional(i.e.,arc setting) to post-collisional and within plate settings.Magma from which the Gabal Batuga granites were fractionated is high-K calc-alkaline giving rise to a typical post-collisional A-type granite(A_(2)-subtype) indicating an origin from an underplating crustal source.Accordingly,it is stressed here that the younger granites in the ANS are not exclusively post-collisional and within-plate but most likely they started to develop before closure of the arc system.The possible source(s) of mafic magmas that resulted in the formation of the two intrusions are discussed.Mineralogical and geochemical data of the post-intrusion dykes(mafic and felsic) suggest typical active continental rift/within-plate settings.展开更多
Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle ...Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed(northwest Algeria)by applying the Soil and Water Assessment Tool(SWAT)hydrological model.SWAT modelling integrates spatial data such as the Digital Elevation Model(DEM),land use,soil types and various meteorological parameters including precipitation,maximum and minimum temperatures,relative humidity,solar radiation and wind speed.The SWAT model was calibrated and validated using data from January 2012 to December 2014,with a calibra-tion period from January 2012 to August 2013 and a validation period from September 2013 to December 2014.Sensitivity and parameter calibration were conducted using the SWAT-SA program,and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge,assessed through statistical coefficients including Nash-Sutcliffe Efficiency(NSE),coefficient of determination(R2)and Percent Bias(PBAIS).Calibration results indicated favourable objec-tive function values(NSE=0.79,R2=0.93,PBAIS=-8.53%),although a slight decrease was observed during validation(NSE=0.69,R2=0.86,and PBAIS=-11.41%).The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin.The SWAT model revealed that approximately 71%of the precipitation in the basin evaporates,while only 29%contributes to surface runoff or infiltration into the soil.展开更多
One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of m...One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.展开更多
Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industria...Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industrial consumption in the Hebron area. Water quality assessment is an important criterion for achieving sustainable development. To evaluate water quality, twenty samples were collected from groundwater sources for two seasons and were analyzed for Physical properties (Total dissolved solids (TDS), Electrical conductivity (EC), potential hydrogen (pH), Temperature (T)), Four major cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>), and the Major anions (HCO<sup>-</sup>3</sub>, Cl<sup>-</sup>, and SO<sup>2-</sup>4</sub>);geochemical methods such as Piper scheme were used for the sample result analysis. To characterize wastewater components, six samples were collected from the Wadi discharge for two seasons and were analyzed (potential hydrogen (pH), Electrical Conductivity (EC), Total Dissolved Solid (TDS), Total Suspended Solids (TDS), Total Suspended Solids (TSS), Biological Oxygen Demand (BOD<sub>5</sub>), and Chemical Oxygen Demand (COD). The results of nitrate levels showed that 20% of the ground water samples exceeded the standard limit of the World Health Organization (WHO). The quality of drinking water was assessed using the Water Quality Index (WQI), which suggests that 10% of samples are classified from poor to very poor. The abundance of cations from highest to lowest was found to be: Ca;Mg;Na, and for the anions it is HCO<sub>3</sub>;Cl;SO<sub>4</sub>. The dominant hydrochemical facies of 35% of collected aquifer samples reveal that Ca-Mg-Na-Cl-HCO<sub>3</sub> are in the domain. Evaluation of irrigation suitability was performed using parameters of Sodium adsorption ratio (SAR), electric conductivity (EC), and Salinity. The results in both rounds for EC showed that all water sources are suitable for irrigation according to Todd’s classification. SAR was not suitable in three water resources samples. Wilcox analysis for the two seasons revealed that 85% of samples are not appropriate for irrigation uses.展开更多
The purpose of this study is to demonstrate how modern technologies such as geographic information systems (GIS) and digital elevation models can help in the creation of a geographic database for the Wadi Wizr basin i...The purpose of this study is to demonstrate how modern technologies such as geographic information systems (GIS) and digital elevation models can help in the creation of a geographic database for the Wadi Wizr basin in Egypt’s Central Eastern Desert, in addition to examining and analysing the radioactive properties of various rocks. This was accomplished with the help of a digital elevation model (DEM) with a 30 metre accuracy and GIS software in 10.8 Arc Map. The RS-230 was also used to measure uranium and thorium concentrations. GIS softwares and digital elevation models have been shown to be more effective than the traditional method. This was demonstrated by the flexible and quick working method, the accuracy of the parameters used, and the results of the morphometric analysis of the basin river network. In addition to, the main drainage pattern from subtype to tree type, where the branching ratio was (1.59). This basin could also cause flooding. Similar studies, according to the results of this study, should make greater use of geographic information system technology and modern data sources. Wadi Wizr also has a radioactive anomaly, with uranium equivalent concentrations reaching 70 ppm in some fault parts.展开更多
[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development u...[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development utilization and the environmental protection of groundwater.[Method] Took Wadi Bay area(dry valley)of Libya as the example,Piper trilinear graphic representation method,the descriptive statistics,the ion ratio coefficient method and the isotope evidence were used to systematically study the special hydrochemical characteristics of shallow groundwater in the arid climate condition in Wadi Bay area of Libya.[Result] The salt content of groundwater in the area was very high,and TDS was during 3.2-8.4 g/L.The main groundwater type was Cl·SO4-Na·Ca,then was Cl·SO4-Na·Ca·Mg.The concentrations of Cl-,Na+ and SO2-4,etc.in the groundwater in 70 km from the sea had the remarkable variation,but the concentrations of Mn2+,Ba2+,Si2+,NH+4 and NO-3 didn't have the same variation phenomenon.[Conclusion] The hydrochemical characteristics of shallow groundwater didn't relate to the dissolution infiltration reaction,the evaporation concentration effect and human activities.The major cause was the mixing effect of salt and fresh water in the invasion process of seawater.展开更多
In this study, we survey the plant diversity of Wadi Hassan, which is located in the Northeastern Badia of Jordan, about 120 km east of Amman. All plant species were collected and herbarium specimens have been prepare...In this study, we survey the plant diversity of Wadi Hassan, which is located in the Northeastern Badia of Jordan, about 120 km east of Amman. All plant species were collected and herbarium specimens have been prepared, identified and deposited at the University of Jordan herbarium(Department of Biology,Faculty of Science). The final plant checklist includes 206 species belonging to 138 genera and 35 families.The most diverse families are Compositae(20.5%), Cruciferae(10.2%), Leguminosae(8.3%) and Boraginaceae(6.8%), followed by Caryophyllaceae and Gramineae(5.4%). These six families represent 60% of the total families recognized in the study area, while nine families each are represented by only one species. Most plants recorded are annual plants(61%), some plants are hemicryptophtes(18%) and camaephytes(15%), while the least frequent life form class was the phanerophyte shrub and perennial(0.5%). Chorological characteristics of the recorded flora show that Saharo-Arabian Region elements, IranoTuranian elements and Mediterranean elements constitute(58%) of the total flora. This research shows that even small portion of the Jordan Badia such as the Wadi Hassan plant community has high species diversity. Thus, we recommended further of the unexplored Wadi plants communities of the Jordan Badia.展开更多
The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and tr...The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and trace elements were analyzed using ICP-MS and treated applying various statistical and mapping techniques. The results showed a significant difference of mean and median Au and most chemical elements in the three portions of the area, and higher values were recorded in the western portion. Furthermore, Au-anomalous sites appeared in upper and lower parts of the Wadi Umm Rilan, along the tributaries of metavolcanic unit and near granitoid contacts. This indicates the main source of Au mineralization is related to emplacement of granitoid plutons and accompanying hydrothermal solutions. There are significant indications for the presence of more than one mineralization event forming a probable single major episode of mineralization in the area, involving Au, Pb and U mineralizations. Geology, geomorphologic aspects and weathering processes could control stream sediment geochemistry, anomalies of Au and associated elements, elemental association and their dispersion patterns. Therefore, the area is fruitful and regarded as a promising target for Au exploration, using Ag, As, Sb, Cd, Cs, and TI as pathfinder elements.展开更多
The stream sediments of Wadi El Reddah(North Eastern Desert,Egypt)are geochemically and mineralogically investigated.Their content of radioactive and other heavy minerals is mainly represented by thorite,uranothorite,...The stream sediments of Wadi El Reddah(North Eastern Desert,Egypt)are geochemically and mineralogically investigated.Their content of radioactive and other heavy minerals is mainly represented by thorite,uranothorite,zircon,monazite,xenotime,columbite,fergusonite,and unknown rare earth elements(REEs)bearing minerals as well as cassiterite.Special emphasis on REE content of thorite,uranothorite,zircon and xenotime has been done to correlate them with the increase of uranium contents in these sediments.The key evidence for the presence lowtemperature alteration processes includes the presence of some zircon crystals as remnants after complete dissolution of the overgrowth zircon in severe acidic environment,the sulphur content,biogenic minerals,occurrence of unusual minerals as cassiterite pore filling in zircon,variation in the REEs content from the surrounding granites to the stream sediments and the abundance of monazite in the surrounding granites.Most minerals are partially and/or completely altered,which indicated by the pseudomorphism of zircon by xenotime,thorite,and uranothorite.展开更多
The study area is a part of the Arabian Shield rocks of west central part of Saudi Arabia (150 km to the northeast of Jeddah). Geologically, the study area comprises five main geologic units i.e. 1) Layered basic volc...The study area is a part of the Arabian Shield rocks of west central part of Saudi Arabia (150 km to the northeast of Jeddah). Geologically, the study area comprises five main geologic units i.e. 1) Layered basic volcanics and related volcaniclastics which are composed mainly from intercalated basalts and andesites and the related volcaniclastic derivatives, 2) Acidic volcanics and related volcaniclastics which are composed from layered and laminated dark and light acidic to intermediate igneous rocks, quartz and chert and marbles, 3) The Tertiary sedimentary succession which of volcaniclastic red beds and the intercalated clays;5) Tertiary volcanics of Harrart, and 4) The Quaternary wadi fill deposits which are composed from friable pebble supported conglomerates, sandstones and clays. Hydrogeologically, the groundwater aquifer of Wadi Qudaid is present mainly in two main horizons i.e. i) unconfined shallow aquifer (13 - 37 m) within the well porous and permeable conglomerates of the Quaternary Wadi deposits, ii) The deep confined aquifer of the bedded tuffaceous sandstones and mudstone of the Tertiary sedimentary succession of Ash Shumaysi Formation. The water samples are analyzed for major elements i.e. Ca, Mg, Na, Cl, SO4, HCO3 and the results show the normal content of these elements. The study related the addition and depletion of many elements during the running trip of the groundwater from the northeast (recharge area) to the southwest (downstream) area.展开更多
This study is concerned with the radioactivity and mineralogy of the younger granites and pegmatites in the Wadi Haleifiya area, southeastern Sinai Peninsula, Egypt. The area is occupied by metasediments, migmatites, ...This study is concerned with the radioactivity and mineralogy of the younger granites and pegmatites in the Wadi Haleifiya area, southeastern Sinai Peninsula, Egypt. The area is occupied by metasediments, migmatites, older and younger granites. Most of these rocks, especially granites, are dissected by mafic and felsic dykes as well as pegmatites. The younger granites are represented by three main varieties: monzogranites, syenogranites and alkali feldspar granites. The monzogranite consists essentially of quartz, plagioclase, potash feldspar and biotite with minor musco-vite. Iron oxide, titanite, zircon and allanite are the main accessory minerals. Syenogranite is massive, medium- to coarse-grained and commonly exhibits equigranular and hypidiomorphic textures. It is made up essentially of potash feldspar, quartz, plagioclase and biotite. Iron oxides, allanite, epidote, titanite, and zircon are accessory minerals. The alkali feldspar granite consists mainly of perthite, quartz, alkali amphibole (arfvedsonite and riebekite), biotite, sub-ordinate plagioclase and aegirine. Iron oxide, zircon and apatite are accessory minerals, whereas chlorite and sas-surite are secondary minerals. The altered monzogranite and pegmatite recorded high radioelement contents. The eU reaches up to 120 (av.=82×10-6) in the altered monzogranite and up to 55 (av.=27×10-6) in the pegmatites. The high radioactivity in the altered monzogranite is due to the presence of thorite, uranothorite and metamict zircon. In the pegmatites, it is re-lated to the presence of uranophane, uranothorite, thorite, zircon, samarskite, monazite, xenotime, magnetite, ilmen-ite, hematite and rutile.展开更多
Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u...Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.展开更多
Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exp...Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.展开更多
The Wadi-Fira region in eastern Chad is facing dramatic water supply problems, related to the climatic semi-arid context and the reception of refugees from the Darfour, which has increased the local population by 22% ...The Wadi-Fira region in eastern Chad is facing dramatic water supply problems, related to the climatic semi-arid context and the reception of refugees from the Darfour, which has increased the local population by 22% these last years. Expansion of agglomerations (temporary new towns), development of agricultural and pastoral practices together with the augmentation of the population have led to dramatic water needs. The basement aquifer of Wadi-Fira constitutes the main source of water supply. However, little is known about this system. Within this context, this work aims at better understanding and identifying hydrogeochemical processes and their relations to groundwater quality within this complex environment, and groundwater recharge mechanisms. 31 groundwater samples were collected at two sites, Am Zoer and Guereda-Iriba, from hand dug wells and deep wells. Major chemical elements were analyzed on all samples and stables isotopes (oxygen-18 and deuterium) on 17 samples. Various methods were used to interpret the hydrochemical data (descriptive and multivariate statistics, Piper and Schoeller diagrams, scatter plots, minerals saturation indices). The stable isotopes were interpreted using conventional IAEA methods. The results permitted to differentiate the laterite reservoir from the deep fractured reservoir. The main process controlling groundwater mineralization is water-rocks interaction and natural minerals dissolution. Ion exchanges, evaporation and anthropogenic activities have also a moderate impact on groundwater quality. Based on isotopes data, it is concluded that groundwater in the basement aquifer is related with modern rainfall. These results provide further insights into this basement aquifer, which is a vital resource for the region of Wadi-Fira.展开更多
In this article, the potential for artificial groundwater recharge of Wadi Al-Butum catchments area - Jordan is studied, using geoelectrical resistivity surveys and hydro geochemical methods with the aim of storing so...In this article, the potential for artificial groundwater recharge of Wadi Al-Butum catchments area - Jordan is studied, using geoelectrical resistivity surveys and hydro geochemical methods with the aim of storing some of surface water during flood events times to be recharged in the groundwater as an essential part of integrated water resources management. The results of geoelectrical surveys show the existence of potential zones of alluvial deposits to store and recharge the groundwater aquifers. The hydro-geochemical modeling results show an overall upgrading of the original groundwater quality could be expected.展开更多
Variations in phytogeography of Jal Al-Zor wadi system in Sabah Al Ahmad Nature Reserve, an arid national park in Kuwait, in relation to physiographic and edaphic conditions were investigated using alpha diversity and...Variations in phytogeography of Jal Al-Zor wadi system in Sabah Al Ahmad Nature Reserve, an arid national park in Kuwait, in relation to physiographic and edaphic conditions were investigated using alpha diversity and multivariate analyses. A total of 66 plant species were recorded at low-relief and high-relief wadis. Altitude and slope gradients, grain size distribution and soil texture properties had a significant relationship with plant cover and plant diversity. There was a high diversity of life-forms along the wadi system with a dominant of therophytes(annuals) particularly in spring after winter rainfalls. Chamaephytes and hemicryptophytes were the dominant perennial life-forms. A chorological analysis documents the strong effect of Saharo-Arabian chorotype on the vegetation of the study area. Cluster analysis clarified eight vegetation assemblages along altitude and slope gradients within the wadi system. Alpha diversity of plant species was greater in plant assemblages at low-relief wadis than at high-relief wadis. Vegetation structure in this study showed that phytogeographically, wadis of Jal Al-Zor were closely related to the wadis in the Arabian deserts. The slope gradient pattern and edaphic conditions of plant assemblages and plant diversity in the conserved wadis of Jal Al-Zor may be suggested as a reference model for restoration strategy of disturbed low elevated wadis in the surrounding desert regions.Restoration would include propagation of suitable plants such as Stipagrostis plumosa-Haloxylon salicornicum-Rhanterium epapposum.展开更多
The lack of water resources in Egypt’s Sinai Peninsula is a major constraint for further socioeconomic development, and flash floods in this region can damage roads and infrastructure. The Wadi Watir basin is the mai...The lack of water resources in Egypt’s Sinai Peninsula is a major constraint for further socioeconomic development, and flash floods in this region can damage roads and infrastructure. The Wadi Watir basin is the main water source for the groundwater aquifer, which supplies fresh water to Nuweiba city, where demands for groundwater are increasing. The objective of this research was to assess the hydrogeological suitability of installing Aquifer Storage and Recovery (ASR) systems in the Wadi Watir delta by using numerical groundwater models. The developed models were used to evaluate the effects of hydrogeological and operational parameters on the recovery efficiency of ASR systems at five potential locations in the study area. As the estimation of recovery efficiency depends on the salinity of recovered water, the recovered water salinity limit was assumed as 150% of the injected water salinity, where 150% refers to the point at which recovery has ended because the concentration of recovered water reached 150% of that of injected water. The most important output from the model runs was that the recovery efficiency of these ASR systems ranged from 25% to 54% with a longitudinal dispersivity of 10 m, volume of injected water of 12,000 m3, and storage period of 180 days. The main conclusions are as follows. 1) Using coupled numerical groundwater flow and solute transport models is an effective tool for predicting the effects of mixing between injected water and ambient groundwater in ASR systems. 2) The groundwater aquifer in the study area is not suitable as strategic area for ASR systems because the thickness of the water storage layer is relatively small and the distance to the sea is very close;consequently, it is recommended that artificial recharge systems be developed with existing technology to replenish the groundwater aquifer in the Wadi Watir delta.展开更多
This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 sampl...This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 samples were collected from a 30 m thick quarry section and used to prepare 35 thin sections. Some samples were washed over a 63 μm sieve, oven-dried at 50°C, sieved, and picked for benthic foraminifera analysis. Microscope analysis used to describe the microfacies and fossil contents. Four microfacies types and four lithological units are distinguished and described from the bottom to the top;the chalky unit (Unit-1) composed of bioclastic wackestone and biomicrite microfacies, and the dolomitic unit (Unit-2) immediately is existed above unit 1 composed dominantly of bioclastic mudstone and biomicrite microfacies. Marly limestone (Unit-3) is the following upwardly unit composed of bioclastic packestone and biosparite Microfacies, and the uppermost unit is limestone (Unit-4) consisted of bioclastic grainstone and biosparite microfacies. The fossil contents that were recognized in the studied thin sections and samples;bivalves, gastropods, pelecypods, cephalopods echinoderms, radiolarian, stromatoporoids, bone fragments, Saccaminopsis sp., Cibicidoides sp., Cibicides sp., Cyclammina sp., calcareous algae (Koninckopora and gymnocodiaceans), worm tubes, serpulids, and plentiful ostracods. The current study indicates that the Wadi As Sir Limestone Formation has deposited in a restricted circulation shallow shelf with low energy conditions most probably lagoonal environment.展开更多
文摘Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for geochemical, petrographic features and hydrocarbon potential as a conventional energy resource. Various petrographic and geochemical techniques were applied. Oil shale resource potential is evaluated for cooling and heating Sal village houses. Geothermal heat pumps, as renewable energy resource in the study area, were simulated for comparison purposes. Results show that Calcite is the main mineral component of oil shale. Magnesite, Ferrisilicate and Zaherite are exhibited in the studied samples. Other trace elements of Zinc, Cobalt and Molybdenum were presented, too. Calcium oxide of 41.01% and Silicon oxide of 12.4% are the main oxides reflected in this oil shale. Petrographic features of the analyzed oil shale found that the primary mineral constituent is micritic calcite, while the secondary minerals include carbonate mud and opaque minerals. Furthermore, it’s found that total organic carbon averages 3.33% while the total carbon content averages 20.6%. ModerateTOCvalues suggest that Wadi Al-Shallala oil shale has a good source rock potential. Even though nitrogen and sulfur are of low contents in Wadi Al-Shallala oil shale, direct combustion of the reserve for electricity generating will increase CO2 emissions by 2.71 Million m3. Two systems were simulated to cover Sal village cooling and heating demands. The conventional system is compared with geothermal heat pumps. Geothermal heat pumps are found to save 60% of electricity consumption in heating and 50% in cooling systems. The environmental benefits for geothermal system implementation will be a reduction in energy consumption as electricity. The savings in fuel oil will be about 9.35 Million barrels. While the reduction of CO2 emissions will drop to 1.5 Million m3. Results suggest that geothermal heat pumps are the best for satisfying cooling and heating needs in Sal village near Wadi Al-Shallala.
文摘In the south Eastern Desert of Egypt,two contrasting types of magmatism(mafic and felsic) are recorded in the Wadi Kalalat area,and form the Gabal El Motaghiarat and Gabal Batuga intrusions,respectively.The two intrusions post-dates ophiolitic and arc associations represented by serpentinite and metagabbro-diorite,respectively.The mafic intrusion has a basal ultramafic member represented by fresh peridotite,which is followed upward by olivine gabbro and anorthositic or leucogabbro.This mafic intrusion pertains to the Alaskan-type mafic-ultramafic intrusions in the Arabian-Nubian Shield(ANS)being of tholeiitic nature and emplaced in a typical arc setting.On the other hand,the Gabal Batuga intrusion comprises three varieties of fresh A-type granites of high K-calc alkaline nature,which is peraluminous and garnetbearing in parts.A narrow thermal aureole in the olivine gabbro of the mafic intrusion was developed due to the intrusion of the Batuga granites.This results in the development of a hornfelsic melagabbro variety in which the composition changed from tholeiitic to a calc-alkaline composition due to the addition of S_(i)O_(2),Al_(2)O_(3),alkalis,lithosphile elements(LILEs) such as Rb(70 ppm) and Y(28 ppm) from the felsic intrusion.Outside the thermal aureole,Rb amounts 2-8 ppm and Y lies in the range <2-6ppm.It is believed that the Gabal Batuga felsic intrusion started to emplace during the waning stage of an arc system,with transition from the pre-collisional(i.e.,arc setting) to post-collisional and within plate settings.Magma from which the Gabal Batuga granites were fractionated is high-K calc-alkaline giving rise to a typical post-collisional A-type granite(A_(2)-subtype) indicating an origin from an underplating crustal source.Accordingly,it is stressed here that the younger granites in the ANS are not exclusively post-collisional and within-plate but most likely they started to develop before closure of the arc system.The possible source(s) of mafic magmas that resulted in the formation of the two intrusions are discussed.Mineralogical and geochemical data of the post-intrusion dykes(mafic and felsic) suggest typical active continental rift/within-plate settings.
文摘Modelling the hydrological balance in semi-arid zones is essential for effective water resource management,encompassing both surface water and groundwater.This study aims to model the monthly hydrological water cycle in the Wadi Mina upstream watershed(northwest Algeria)by applying the Soil and Water Assessment Tool(SWAT)hydrological model.SWAT modelling integrates spatial data such as the Digital Elevation Model(DEM),land use,soil types and various meteorological parameters including precipitation,maximum and minimum temperatures,relative humidity,solar radiation and wind speed.The SWAT model was calibrated and validated using data from January 2012 to December 2014,with a calibra-tion period from January 2012 to August 2013 and a validation period from September 2013 to December 2014.Sensitivity and parameter calibration were conducted using the SWAT-SA program,and model performance evaluation relied on comparing the observed discharge at the outlet of the basin with model-simulated discharge,assessed through statistical coefficients including Nash-Sutcliffe Efficiency(NSE),coefficient of determination(R2)and Percent Bias(PBAIS).Calibration results indicated favourable objec-tive function values(NSE=0.79,R2=0.93,PBAIS=-8.53%),although a slight decrease was observed during validation(NSE=0.69,R2=0.86,and PBAIS=-11.41%).The application of the SWAT model to the Wadi Mina upstream watershed highlighted its utility in simulating the spatial distribution of different components of the hydrological balance in this basin.The SWAT model revealed that approximately 71%of the precipitation in the basin evaporates,while only 29%contributes to surface runoff or infiltration into the soil.
基金the framework of the SWATCH project (Prima project)funded by the DGRSDT,Algeria
文摘One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.
文摘Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industrial consumption in the Hebron area. Water quality assessment is an important criterion for achieving sustainable development. To evaluate water quality, twenty samples were collected from groundwater sources for two seasons and were analyzed for Physical properties (Total dissolved solids (TDS), Electrical conductivity (EC), potential hydrogen (pH), Temperature (T)), Four major cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>), and the Major anions (HCO<sup>-</sup>3</sub>, Cl<sup>-</sup>, and SO<sup>2-</sup>4</sub>);geochemical methods such as Piper scheme were used for the sample result analysis. To characterize wastewater components, six samples were collected from the Wadi discharge for two seasons and were analyzed (potential hydrogen (pH), Electrical Conductivity (EC), Total Dissolved Solid (TDS), Total Suspended Solids (TDS), Total Suspended Solids (TSS), Biological Oxygen Demand (BOD<sub>5</sub>), and Chemical Oxygen Demand (COD). The results of nitrate levels showed that 20% of the ground water samples exceeded the standard limit of the World Health Organization (WHO). The quality of drinking water was assessed using the Water Quality Index (WQI), which suggests that 10% of samples are classified from poor to very poor. The abundance of cations from highest to lowest was found to be: Ca;Mg;Na, and for the anions it is HCO<sub>3</sub>;Cl;SO<sub>4</sub>. The dominant hydrochemical facies of 35% of collected aquifer samples reveal that Ca-Mg-Na-Cl-HCO<sub>3</sub> are in the domain. Evaluation of irrigation suitability was performed using parameters of Sodium adsorption ratio (SAR), electric conductivity (EC), and Salinity. The results in both rounds for EC showed that all water sources are suitable for irrigation according to Todd’s classification. SAR was not suitable in three water resources samples. Wilcox analysis for the two seasons revealed that 85% of samples are not appropriate for irrigation uses.
文摘The purpose of this study is to demonstrate how modern technologies such as geographic information systems (GIS) and digital elevation models can help in the creation of a geographic database for the Wadi Wizr basin in Egypt’s Central Eastern Desert, in addition to examining and analysing the radioactive properties of various rocks. This was accomplished with the help of a digital elevation model (DEM) with a 30 metre accuracy and GIS software in 10.8 Arc Map. The RS-230 was also used to measure uranium and thorium concentrations. GIS softwares and digital elevation models have been shown to be more effective than the traditional method. This was demonstrated by the flexible and quick working method, the accuracy of the parameters used, and the results of the morphometric analysis of the basin river network. In addition to, the main drainage pattern from subtype to tree type, where the branching ratio was (1.59). This basin could also cause flooding. Similar studies, according to the results of this study, should make greater use of geographic information system technology and modern data sources. Wadi Wizr also has a radioactive anomaly, with uranium equivalent concentrations reaching 70 ppm in some fault parts.
基金Supported by the International Cooperation Item "Groundwater Quality Management in the Coastal Region of Libya"Scientific Research Initial Fund of Returned Overseas Students in Ministry of Education"Innovation Team" Item of Basic Scientific Research Operating Cost in Jilin University(20082004)~~
文摘[Objective] The research aimed to analyze the formation reason of groundwater hydrochemical characteristics in the dry valley area of Wadi Bay of Libya and provide the scientific basis for the reasonable development utilization and the environmental protection of groundwater.[Method] Took Wadi Bay area(dry valley)of Libya as the example,Piper trilinear graphic representation method,the descriptive statistics,the ion ratio coefficient method and the isotope evidence were used to systematically study the special hydrochemical characteristics of shallow groundwater in the arid climate condition in Wadi Bay area of Libya.[Result] The salt content of groundwater in the area was very high,and TDS was during 3.2-8.4 g/L.The main groundwater type was Cl·SO4-Na·Ca,then was Cl·SO4-Na·Ca·Mg.The concentrations of Cl-,Na+ and SO2-4,etc.in the groundwater in 70 km from the sea had the remarkable variation,but the concentrations of Mn2+,Ba2+,Si2+,NH+4 and NO-3 didn't have the same variation phenomenon.[Conclusion] The hydrochemical characteristics of shallow groundwater didn't relate to the dissolution infiltration reaction,the evaporation concentration effect and human activities.The major cause was the mixing effect of salt and fresh water in the invasion process of seawater.
基金supported by the Biology Department, University of Jordan, AmmanUniversity of Jordan support for Scientific Research
文摘In this study, we survey the plant diversity of Wadi Hassan, which is located in the Northeastern Badia of Jordan, about 120 km east of Amman. All plant species were collected and herbarium specimens have been prepared, identified and deposited at the University of Jordan herbarium(Department of Biology,Faculty of Science). The final plant checklist includes 206 species belonging to 138 genera and 35 families.The most diverse families are Compositae(20.5%), Cruciferae(10.2%), Leguminosae(8.3%) and Boraginaceae(6.8%), followed by Caryophyllaceae and Gramineae(5.4%). These six families represent 60% of the total families recognized in the study area, while nine families each are represented by only one species. Most plants recorded are annual plants(61%), some plants are hemicryptophtes(18%) and camaephytes(15%), while the least frequent life form class was the phanerophyte shrub and perennial(0.5%). Chorological characteristics of the recorded flora show that Saharo-Arabian Region elements, IranoTuranian elements and Mediterranean elements constitute(58%) of the total flora. This research shows that even small portion of the Jordan Badia such as the Wadi Hassan plant community has high species diversity. Thus, we recommended further of the unexplored Wadi plants communities of the Jordan Badia.
文摘The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and trace elements were analyzed using ICP-MS and treated applying various statistical and mapping techniques. The results showed a significant difference of mean and median Au and most chemical elements in the three portions of the area, and higher values were recorded in the western portion. Furthermore, Au-anomalous sites appeared in upper and lower parts of the Wadi Umm Rilan, along the tributaries of metavolcanic unit and near granitoid contacts. This indicates the main source of Au mineralization is related to emplacement of granitoid plutons and accompanying hydrothermal solutions. There are significant indications for the presence of more than one mineralization event forming a probable single major episode of mineralization in the area, involving Au, Pb and U mineralizations. Geology, geomorphologic aspects and weathering processes could control stream sediment geochemistry, anomalies of Au and associated elements, elemental association and their dispersion patterns. Therefore, the area is fruitful and regarded as a promising target for Au exploration, using Ag, As, Sb, Cd, Cs, and TI as pathfinder elements.
文摘The stream sediments of Wadi El Reddah(North Eastern Desert,Egypt)are geochemically and mineralogically investigated.Their content of radioactive and other heavy minerals is mainly represented by thorite,uranothorite,zircon,monazite,xenotime,columbite,fergusonite,and unknown rare earth elements(REEs)bearing minerals as well as cassiterite.Special emphasis on REE content of thorite,uranothorite,zircon and xenotime has been done to correlate them with the increase of uranium contents in these sediments.The key evidence for the presence lowtemperature alteration processes includes the presence of some zircon crystals as remnants after complete dissolution of the overgrowth zircon in severe acidic environment,the sulphur content,biogenic minerals,occurrence of unusual minerals as cassiterite pore filling in zircon,variation in the REEs content from the surrounding granites to the stream sediments and the abundance of monazite in the surrounding granites.Most minerals are partially and/or completely altered,which indicated by the pseudomorphism of zircon by xenotime,thorite,and uranothorite.
文摘The study area is a part of the Arabian Shield rocks of west central part of Saudi Arabia (150 km to the northeast of Jeddah). Geologically, the study area comprises five main geologic units i.e. 1) Layered basic volcanics and related volcaniclastics which are composed mainly from intercalated basalts and andesites and the related volcaniclastic derivatives, 2) Acidic volcanics and related volcaniclastics which are composed from layered and laminated dark and light acidic to intermediate igneous rocks, quartz and chert and marbles, 3) The Tertiary sedimentary succession which of volcaniclastic red beds and the intercalated clays;5) Tertiary volcanics of Harrart, and 4) The Quaternary wadi fill deposits which are composed from friable pebble supported conglomerates, sandstones and clays. Hydrogeologically, the groundwater aquifer of Wadi Qudaid is present mainly in two main horizons i.e. i) unconfined shallow aquifer (13 - 37 m) within the well porous and permeable conglomerates of the Quaternary Wadi deposits, ii) The deep confined aquifer of the bedded tuffaceous sandstones and mudstone of the Tertiary sedimentary succession of Ash Shumaysi Formation. The water samples are analyzed for major elements i.e. Ca, Mg, Na, Cl, SO4, HCO3 and the results show the normal content of these elements. The study related the addition and depletion of many elements during the running trip of the groundwater from the northeast (recharge area) to the southwest (downstream) area.
文摘This study is concerned with the radioactivity and mineralogy of the younger granites and pegmatites in the Wadi Haleifiya area, southeastern Sinai Peninsula, Egypt. The area is occupied by metasediments, migmatites, older and younger granites. Most of these rocks, especially granites, are dissected by mafic and felsic dykes as well as pegmatites. The younger granites are represented by three main varieties: monzogranites, syenogranites and alkali feldspar granites. The monzogranite consists essentially of quartz, plagioclase, potash feldspar and biotite with minor musco-vite. Iron oxide, titanite, zircon and allanite are the main accessory minerals. Syenogranite is massive, medium- to coarse-grained and commonly exhibits equigranular and hypidiomorphic textures. It is made up essentially of potash feldspar, quartz, plagioclase and biotite. Iron oxides, allanite, epidote, titanite, and zircon are accessory minerals. The alkali feldspar granite consists mainly of perthite, quartz, alkali amphibole (arfvedsonite and riebekite), biotite, sub-ordinate plagioclase and aegirine. Iron oxide, zircon and apatite are accessory minerals, whereas chlorite and sas-surite are secondary minerals. The altered monzogranite and pegmatite recorded high radioelement contents. The eU reaches up to 120 (av.=82×10-6) in the altered monzogranite and up to 55 (av.=27×10-6) in the pegmatites. The high radioactivity in the altered monzogranite is due to the presence of thorite, uranothorite and metamict zircon. In the pegmatites, it is re-lated to the presence of uranophane, uranothorite, thorite, zircon, samarskite, monazite, xenotime, magnetite, ilmen-ite, hematite and rutile.
基金The German Academic Exchange Service (DAAD) provided funding for the first authorThe German Federal Ministry of Education and Research (BMBF) provided funding for the second author through the “GLANCE” project (Global Change Effects on River Ecosystems, 01LN1320A)。
文摘Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.
文摘Sustainable management of groundwater resources has now become an obligation,especially in arid and semi-arid regions given the socio-economic importance of this resource.The optimization in zoning for groundwater exploitation helps in planning and managing groundwater supply works such as boreholes and wells in the catchment.The objective of this study is to use remote sensing and GIS-based Analytical Hierarchy Process(AHP)techniques to evaluate the groundwater potential of Wadi Saida Watershed.Spatial analysis such as geostatistics was also used to validate results and ensure more accuracy.Through the GIS tools and remote sensing technique,earth observation data were converted into thematic layers such as lineament density,geology,drainage density,slope,land use and rainfall,which were combined to delineate groundwater potential zones.Based on their respective impact on groundwater potential,the AHP approach was adopted to assign weights on multi-influencing factors.These results will enable decision-makers to optimize hydrogeological exploration in large-scale catchment areas and map areas.According to the results,the southern part of the Wadi Saida Watershed is characterized as a higher groundwater potential area,where 32%of the total surface area falls in the excellent and good class of groundwater potential.The validation process revealed a 71%agreement between the estimated and actual yield of the existing boreholes in the study area.
文摘The Wadi-Fira region in eastern Chad is facing dramatic water supply problems, related to the climatic semi-arid context and the reception of refugees from the Darfour, which has increased the local population by 22% these last years. Expansion of agglomerations (temporary new towns), development of agricultural and pastoral practices together with the augmentation of the population have led to dramatic water needs. The basement aquifer of Wadi-Fira constitutes the main source of water supply. However, little is known about this system. Within this context, this work aims at better understanding and identifying hydrogeochemical processes and their relations to groundwater quality within this complex environment, and groundwater recharge mechanisms. 31 groundwater samples were collected at two sites, Am Zoer and Guereda-Iriba, from hand dug wells and deep wells. Major chemical elements were analyzed on all samples and stables isotopes (oxygen-18 and deuterium) on 17 samples. Various methods were used to interpret the hydrochemical data (descriptive and multivariate statistics, Piper and Schoeller diagrams, scatter plots, minerals saturation indices). The stable isotopes were interpreted using conventional IAEA methods. The results permitted to differentiate the laterite reservoir from the deep fractured reservoir. The main process controlling groundwater mineralization is water-rocks interaction and natural minerals dissolution. Ion exchanges, evaporation and anthropogenic activities have also a moderate impact on groundwater quality. Based on isotopes data, it is concluded that groundwater in the basement aquifer is related with modern rainfall. These results provide further insights into this basement aquifer, which is a vital resource for the region of Wadi-Fira.
文摘In this article, the potential for artificial groundwater recharge of Wadi Al-Butum catchments area - Jordan is studied, using geoelectrical resistivity surveys and hydro geochemical methods with the aim of storing some of surface water during flood events times to be recharged in the groundwater as an essential part of integrated water resources management. The results of geoelectrical surveys show the existence of potential zones of alluvial deposits to store and recharge the groundwater aquifers. The hydro-geochemical modeling results show an overall upgrading of the original groundwater quality could be expected.
文摘Variations in phytogeography of Jal Al-Zor wadi system in Sabah Al Ahmad Nature Reserve, an arid national park in Kuwait, in relation to physiographic and edaphic conditions were investigated using alpha diversity and multivariate analyses. A total of 66 plant species were recorded at low-relief and high-relief wadis. Altitude and slope gradients, grain size distribution and soil texture properties had a significant relationship with plant cover and plant diversity. There was a high diversity of life-forms along the wadi system with a dominant of therophytes(annuals) particularly in spring after winter rainfalls. Chamaephytes and hemicryptophytes were the dominant perennial life-forms. A chorological analysis documents the strong effect of Saharo-Arabian chorotype on the vegetation of the study area. Cluster analysis clarified eight vegetation assemblages along altitude and slope gradients within the wadi system. Alpha diversity of plant species was greater in plant assemblages at low-relief wadis than at high-relief wadis. Vegetation structure in this study showed that phytogeographically, wadis of Jal Al-Zor were closely related to the wadis in the Arabian deserts. The slope gradient pattern and edaphic conditions of plant assemblages and plant diversity in the conserved wadis of Jal Al-Zor may be suggested as a reference model for restoration strategy of disturbed low elevated wadis in the surrounding desert regions.Restoration would include propagation of suitable plants such as Stipagrostis plumosa-Haloxylon salicornicum-Rhanterium epapposum.
文摘The lack of water resources in Egypt’s Sinai Peninsula is a major constraint for further socioeconomic development, and flash floods in this region can damage roads and infrastructure. The Wadi Watir basin is the main water source for the groundwater aquifer, which supplies fresh water to Nuweiba city, where demands for groundwater are increasing. The objective of this research was to assess the hydrogeological suitability of installing Aquifer Storage and Recovery (ASR) systems in the Wadi Watir delta by using numerical groundwater models. The developed models were used to evaluate the effects of hydrogeological and operational parameters on the recovery efficiency of ASR systems at five potential locations in the study area. As the estimation of recovery efficiency depends on the salinity of recovered water, the recovered water salinity limit was assumed as 150% of the injected water salinity, where 150% refers to the point at which recovery has ended because the concentration of recovered water reached 150% of that of injected water. The most important output from the model runs was that the recovery efficiency of these ASR systems ranged from 25% to 54% with a longitudinal dispersivity of 10 m, volume of injected water of 12,000 m3, and storage period of 180 days. The main conclusions are as follows. 1) Using coupled numerical groundwater flow and solute transport models is an effective tool for predicting the effects of mixing between injected water and ambient groundwater in ASR systems. 2) The groundwater aquifer in the study area is not suitable as strategic area for ASR systems because the thickness of the water storage layer is relatively small and the distance to the sea is very close;consequently, it is recommended that artificial recharge systems be developed with existing technology to replenish the groundwater aquifer in the Wadi Watir delta.
文摘This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 samples were collected from a 30 m thick quarry section and used to prepare 35 thin sections. Some samples were washed over a 63 μm sieve, oven-dried at 50°C, sieved, and picked for benthic foraminifera analysis. Microscope analysis used to describe the microfacies and fossil contents. Four microfacies types and four lithological units are distinguished and described from the bottom to the top;the chalky unit (Unit-1) composed of bioclastic wackestone and biomicrite microfacies, and the dolomitic unit (Unit-2) immediately is existed above unit 1 composed dominantly of bioclastic mudstone and biomicrite microfacies. Marly limestone (Unit-3) is the following upwardly unit composed of bioclastic packestone and biosparite Microfacies, and the uppermost unit is limestone (Unit-4) consisted of bioclastic grainstone and biosparite microfacies. The fossil contents that were recognized in the studied thin sections and samples;bivalves, gastropods, pelecypods, cephalopods echinoderms, radiolarian, stromatoporoids, bone fragments, Saccaminopsis sp., Cibicidoides sp., Cibicides sp., Cyclammina sp., calcareous algae (Koninckopora and gymnocodiaceans), worm tubes, serpulids, and plentiful ostracods. The current study indicates that the Wadi As Sir Limestone Formation has deposited in a restricted circulation shallow shelf with low energy conditions most probably lagoonal environment.