The emission and Fourier transformation infrared spectra of freshly prepared porous silicon(PS) and the silicon wafer were examined. Increasing temperature generally led to a decrease in the emission intensities of th...The emission and Fourier transformation infrared spectra of freshly prepared porous silicon(PS) and the silicon wafer were examined. Increasing temperature generally led to a decrease in the emission intensities of the PS samples, however, the freshly prepared sample showed an unusually large and sudden increase in its emission intensity at the specific temperature at which the hydrogen ion conductivity in the silicon wafer increased. The O-H vibrations of the silicon wafer also showed a sudden decrease at the same temperature. These results are consistent with the assumption that the luminescence of fresh PS comes from the carrier bound exciton in its confined nanostructure.展开更多
To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fouri...To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fourier transform infrared (FTIR) spectroscopy and metallography, Inhomogeneously distributed oxygen impurity and dislocations were demonstrated to be key leading factors, and the restriction mechanism was discussed. Scattering process caused by ionized impurities and dislocations decreased carrier mobility, while carrier concentration was not significantly affected. Measurements showed that resistivity was higher and more dispersive in low lifetime area. Solar cells were fabricated with these wafers. Cells' efficiency of inhomogeneous ones exhibited averagely 0.27% lower than the regular ones in absolute terms. Recombination centers and leakage loss induced by dislocations and impurities led to the reduction in shunt resistors and open-circuit voltage, and then affected the performance of cells.展开更多
基金Supported by the National Natural Science Foundation of China(No.2 0 1730 73)
文摘The emission and Fourier transformation infrared spectra of freshly prepared porous silicon(PS) and the silicon wafer were examined. Increasing temperature generally led to a decrease in the emission intensities of the PS samples, however, the freshly prepared sample showed an unusually large and sudden increase in its emission intensity at the specific temperature at which the hydrogen ion conductivity in the silicon wafer increased. The O-H vibrations of the silicon wafer also showed a sudden decrease at the same temperature. These results are consistent with the assumption that the luminescence of fresh PS comes from the carrier bound exciton in its confined nanostructure.
基金financially supported by the Department of Education of Guangdong Province(Grant No.2013CXZDA002)Guangzhou Science and Technology Department(Grant No.2014Y2-00221)
文摘To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fourier transform infrared (FTIR) spectroscopy and metallography, Inhomogeneously distributed oxygen impurity and dislocations were demonstrated to be key leading factors, and the restriction mechanism was discussed. Scattering process caused by ionized impurities and dislocations decreased carrier mobility, while carrier concentration was not significantly affected. Measurements showed that resistivity was higher and more dispersive in low lifetime area. Solar cells were fabricated with these wafers. Cells' efficiency of inhomogeneous ones exhibited averagely 0.27% lower than the regular ones in absolute terms. Recombination centers and leakage loss induced by dislocations and impurities led to the reduction in shunt resistors and open-circuit voltage, and then affected the performance of cells.