Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied dur...Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.展开更多
In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle c...In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.展开更多
The adsorption mechanism of particle on the surface of silicon wafer after polishing or grinding whose surface force field is very strong was discussed, and the removal method of particle was studied. Particle is depo...The adsorption mechanism of particle on the surface of silicon wafer after polishing or grinding whose surface force field is very strong was discussed, and the removal method of particle was studied. Particle is deposited on the wafer surface by interactions, mainly including the Van der Waals forces and static forces. In order to suppress particles depositing on the wafer surface, it is essential that the wafer surface and the particles should have the same polarity of the zeta potential. According to colloid chemistry and lots of experiments, this can be achieved by adding surfactants. Nonionic complex surfactant was used as megasonic cleaning solution, and the adsorptive state of particle on Si wafers was effectively controlled. The efficiency and effect of megasonic particle removal is greatly improved. A perfect result is also obtained in wafer cleaning.展开更多
文摘Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.
文摘In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.
文摘The adsorption mechanism of particle on the surface of silicon wafer after polishing or grinding whose surface force field is very strong was discussed, and the removal method of particle was studied. Particle is deposited on the wafer surface by interactions, mainly including the Van der Waals forces and static forces. In order to suppress particles depositing on the wafer surface, it is essential that the wafer surface and the particles should have the same polarity of the zeta potential. According to colloid chemistry and lots of experiments, this can be achieved by adding surfactants. Nonionic complex surfactant was used as megasonic cleaning solution, and the adsorptive state of particle on Si wafers was effectively controlled. The efficiency and effect of megasonic particle removal is greatly improved. A perfect result is also obtained in wafer cleaning.