期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Drop failure modes of Sn-3.0Ag-0.5Cu solder joints in wafer level chip scale package 被引量:5
1
作者 黄明亮 赵宁 +1 位作者 刘爽 何宜谦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1663-1669,共7页
To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden... To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side. 展开更多
关键词 Sn-3.0Ag-0.5Cu wafer level chip scale package solder joint drop failure mode
下载PDF
Wafer level hermetic packaging based on Cu-Sn isothermal solidification technology
2
作者 曹毓涵 罗乐 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第8期164-168,共5页
A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding param... A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu6Sn5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 × 10-9 atm cc/s are possible, meeting the demands of MIL-STD-883E. 展开更多
关键词 wafer level package Cu-Sn isothermal solidification technology hermeticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部